Как рассчитать дебит газовой скважины. Выбор режима работы газовой скважины. Применение формулы Дюпюи

Основным элементом системы водоснабжения является источник водоснабжения. Для автономных систем в частных домовладениях, на дачах или фермерских хозяйствах в качестве источников используют колодцы или скважины. Принцип водоснабжения прост: водоносный слой наполняет их водой, которая с помощью насоса подается пользователям. При длительной работе насоса, какова бы ни была его мощность, он не может подать воды больше, чем водонос отдает в трубу.

Любой источник имеет предельный объем воды, которую он может отдать потребителю за единицу времени.

Определения дебита

После бурения, проводившая работу организация предоставляет протокол испытания, либо паспорт на скважину, в который вносится все необходимые параметры. Однако, при бурении для домохозяйств, подрядчики часто вносят в паспорт приблизительные значение.

Перепроверить достоверность информации или рассчитать дебит вашей скважины можно своими руками.

Динамика, статика и высота столба воды

Прежде чем приступить к измерениям, нужно понять, что такое статический и динамический уровень воды в скважине, а также высота столба воды в скважинной колонне. Замер данных параметров необходим не только для расчета производительности скважины, но и для правильного выбора насосного агрегата для системы водоснабжения.

  • Статический уровень – это высота водяного столба при отсутствии водозабора. Зависит от внутрипластового давления и устанавливается во время простоя (как правило не менее часа);
  • Динамический уровень – установившейся уровень воды во время водозабора, то есть когда приток жидкости равняется оттоку;
  • Высота столба – разница между глубиной скважины и статическим уровнем.

Динамика и статика измеряется в метрах от земли, а высота столба от дна скважины

Произвести измерение можно с помощью:

  • Электроуровнемера;
  • Электрода, замыкающего контакт при взаимодействии с водой;
  • Обычного грузика, подвязанного к веревке.

Замер с помощью сигнализирующего электрода

Определение производительности насоса

При расчете дебита необходимо знать производительность насоса во время откачки. Для этого можно воспользоваться следующими способами:

  • Посмотреть данные расходомера или счетчика;
  • Ознакомиться с паспортом на насос и узнать производительность по рабочей точке;
  • Посчитать приблизительной расход по напору воды.

В последнем случае, необходимо на выходе водоподъемной трубы закрепить в горизонтальном положении трубу меньшего диаметра. И произвести следующие замеры:

  • Длину трубы (мин 1,5 м.) и ее диаметр;
  • Высоту от земли до центра трубы;
  • Длину выброса струи от конца трубы до точки падения на землю.

После получения данных необходимо сопоставить их по диаграмме.


Сопоставьте данные по аналогии с примером

Измерение динамического уровня и дебита скважины нужно производить насосом с производительностью не менее вашего расчетного пикового расхода воды.

Упрощенный расчет

Дебит скважины – это отношение произведения интенсивности водооткачки и высоты водяного столба к разности между динамическим и статическим водными уровнями. Для определения дебита скважины определения используется формула:

Dт =(V/(Hдин-Нст))*Hв , где

  • Dт –искомый дебит;
  • V – объем откачиваемой жидкости;
  • Hдин – динамический уровень;
  • Hст – статический уровень;
  • Нв – высота столба воды.

Например, мы имеем скважину глубиной 60 метров; статика которой составляет 40 метров; динамический уровень при работе насоса производительностью 3 куб.м/час установился на отметке 47 метров.

Итого, дебит составит: Dт = (3/(47-40))*20= 8,57 куб.м/час.

Упрощенный метод измерений включает замер динамического уровня при работе насоса с одной производительностью, для частного сектора этого может быть достаточно, но для определения точной картины – нет.

Удельный дебит

С увеличением производительности насоса, динамический уровень, а соответственно и фактический дебит снижается. Поэтому более точно водозабор характеризует коэффициент продуктивности и удельный дебит.

Для вычисления последнего следует произвести не один, а два замера динамического уровня при разных показателях интенсивности водозабора.

Удельный дебит скважины – объем воды, выдаваемой при снижении ее уровня за каждый метр.

Формула определяет его как отношение разности большего и меньшего значений интенсивности водозабора к разности между величинами падения водного столба.

Dуд=(V2-V1)/(h2-h1), где

  • Dуд – удельный дебит
  • V2 – объем откачиваемой воды при втором водозаборе
  • V1 – первичный откачиваемый объем
  • h2 – снижение уровня воды при втором водозаборе
  • h1 – снижение уровня при первом водозаборе

Возвращаясь к нашей условной скважине: при водозаборе с интенсивностью 3 куб.м/час, разница между динамикой и статикой составила 7 м.; при повторном замере с производительностью насоса в 6 куб.м/час разница составила 15 м.

Итого, удельный дебит составит: Dуд =(6-3)/(15-7)= 0,375 куб.м/час

Реальный дебит

Расчет строится на основании удельного показателя и расстоянии от поверхности земли до верхней точки фильтровальной зоны, учитывая условие, что насосный агрегат не будет погружен ниже. Данный расчет максимально соответствует реальности.

D т = (H ф- H ст ) * D уд, где

  • Dт –дебит скважины;
  • Hф – расстояние до начала фильтровальной зоны (в нашем случае примем за 57 м.);
  • Hст – статический уровень;
  • Dуд – удельный дебит.

Итого, реальный дебит составит: Dт =(57-40)*0,375= 6,375 куб.м/час.

Как видно, в случае с нашей воображаемой скважиной, разница между упрощенным и последующем измерением составила почти 2,2 куб.м/час в сторону уменьшения производительности.

Снижение дебита

В ходе эксплуатации производительность скважины может уменьшаться, основной причиной снижения дебита является засорение, а для его увеличения до прежнего уровня необходимо производить очистку фильтров.

Со временем рабочие колеса центробежного насоса могут износиться, особенно если ваша скважина на песке, в этом случае его производительность станет ниже.

Однако, прочистка может не помочь, если изначально у вас оказалась малодебитная водяная скважина. Причины этого разные: диаметр эксплуатационной трубы недостаточен, она попала мимо водоносного слоя или он содержит мало влаги.

1

Технологическая операция вертикального гидроразрыва пласта (ГРП) часто применяется на газодобывающих промыслах для интенсификации притока флюида к скважине. Широкое практическое применение ГРП стимулирует научные и промысловые исследования по изучению закономерностей фильтрации газа к скважинам с трещинами гидроразрыва . В предлагаемой статье выводится новая формула для расчета дебита газодобывающей скважины после ГРП, расчеты по которой осуществляются намного проще, нежели по формулам . В то же время предлагаемая авторами альтернативная формула дает результаты, отклоняющиеся от результатов в пределах не более 3-5%, что позволяет рекомендовать альтернативную формулу к практическому применению.

1. Геометрическая модель призабойной зоны и трещины гидроразрыва

Следуя работе Каневской Р.Д. и Каца Р.М. вертикальную трещину гидроразрыва пласта с конечной толщиной и проводимостью моделируем в виде эллипса с полуосями l и w (рис. 1).

Рис. 1 . Схема области фильтрации:
1 - пласт; 2 - трещина; 3 - призабойная зона пласта.
a 2 - b 2 = l 2 - w 2 = f 2 ; f - фокусное расстояние конфокальных эллипсов;
r c - радиус скважины. Приток флюида в скважину осуществляется только через трещину

Границу призабойной зоны пласта (ПЗП) моделируем эллипсом, конфокальным к эллиптической трещине. Геометрические размеры и фокусное расстояние f этих двух конфокальных эллипсов будут связаны уравнением

Проницаемости наполнителя трещины 2, призабойной зоны пласта 3 и незагрязненной (удаленной от скважины) части пласта ℓ будем обозначать соответственно как k 2 , k 3 и k 1 . Установившуюся фильтрацию флюида во всей области фильтрации на рис. 1, как и в , считаем подчиняющейся линейному закону Дарси. Вдоль эллиптических границ трещины и ПЗП давление принимается постоянным - названные границы при выводе формулы для дебита скважины принимаются за изобары.

Для вывода формулы дебита скважины с трещиной ГРП предварительно рассчитаем фильтрационные потоки в каждой отдельной части области фильтрации на рис. 1.

2. Расчет притока флюида в скважину через вертикальную трещину гидроразрыва

При расчете притока флюида в скважину из вертикальной эллиптической трещины в в начале координат размещают точечный сток, мощность которого и определяет искомый дебит скважины с ГРП. Однако радиус скважины ≈ 10-15 см, а наибольшая толщина (раскрытие) трещины ≈ 1 см. При таком соотношении размеров радиуса скважины и толщины трещины, моделировать течение к скважине из трещины гидроразрыва при помощи точечного стока в начале координат проблематично, что, по-видимому, и привело авторов к сложному расчетному алгоритму.

Чтобы избежать вычислительных трудностей, связанных с использованием точечного стока, в данной работе на этапе расчета притока флюида в скважину из трещины гидроразрыва последняя моделируется в виде двух одинаковых тонких протяженных прямоугольников с размерами ℓ′ (длина) и 2w′ (ширина). Прямоугольники непосредственно примыкают к скважине по разные стороны от нее и их оси расположены на одной прямой, проходящей через центр скважины. Эллиптическая трещина отождествляется с прямоугольной, если вне кругового контура скважины они обладают равными длинами и площадями поперечных сечений. Исходя из такого определения тождественности двух форм трещин, для геометрических параметров трещин получаем следующие уравнения связи:

(2)

Рассмотрим приток флюида к скважине через трещину гидроразрыва прямоугольной формы. Установившаяся плоскопараллельная фильтрация совершенного газа, как известно, описывается решениями уравнения Лапласа

(3)

относительно функции , где p - давление. Если решение уравнения (3) при соответствующих граничных условиях будет найдено, то поле скоростей найдется из закона Дарси по формуле

В решаемой задаче расчетная область - прямоугольник на сторонах которого задаются следующие граничные условия:

Решение краевой задачи (3)‒(6) строится стандартным методом Фурье и имеет вид

Неопределенные коэффициенты A n в формуле (7) находим из последнего граничного условия (6). С помощью известных формул для коэффициентов ряда Фурье, получим, что

(9)

Подстановка коэффициентов A n из формул (9) в (7) приводит к следующему выражению для функции :

В формуле (10) осталась лишь одна неизвестная величина - скорость фильтрации на границе x = 0 - на входе потока из трещины гидроразрыва в ствол скважины. Для определения неизвестной величины v вычислим среднее значение функции Ф(x, y) на границе x = 0. На основании формулы (10) для среднего значения

(11)

найдем, что

(12)

С другой стороны, на границе x = 0 давление должно быть равно забойному давлению и, следовательно, должно выполняться равенство . С учетом последнего замечания
из (12) для неизвестной величины получим следующее значение:

(13)

где .

Учитывая, что приток флюида в скважину (подсчитанный для атмосферного давления и пластовой температуры) через трещину гидроразрыва в пласте с толщиной b′ равен величине , для искомой величины дебита Q скважины окончательно получим выражение

(14)

3. Расчет притока флюида к вертикальной эллиптической трещине гидроразрыва от конфокальной границы ПЗП

Рассмотрим теперь фильтрацию в области 3 между трещиной гидроразрыва и эллиптической границей призабойной зоны. На этом этапе исследования форму трещины примем в виде удлиненного эллипса с осями 2l (длина трещины) и 2w (параметр, характеризующий раскрытие трещины). Формула для притока совершенного газа от эллиптической границы ПЗП к эллиптической границе трещины хорошо известна и имеет вид:

(15)

4. Расчет притока флюида к эллиптической границе ПЗП от кругового контура питания

Теперь рассмотрим фильтрацию в 1-й области между эллиптической границей призабойной зоны и круговым контуром питания с радиусом R. Формулу для притока флюида к эллиптической границе ПЗП можно получить методом ЭГДА, исходя из формулы (4)-(25) справочника по расчету электрических емкостей. Формула (4)-(25) в терминах рассматриваемой задачи фильтрации на основании ЭГДА запишется следующим образом:

(16)

где K(k) и K(k′) = K′(k) - полные эллиптические интегралы 1-го рода с модулями k и соответственно, а F(ψ; k) - неполный эллиптический интеграл первого рода. Модуль k и аргумент ψ вычисляются через параметры уравнений границ ПЗП и радиус R кругового контура питания по следующим формулам:

(17)

5. Вывод формулы для расчета дебита газодобывающей скважины с вертикальной трещиной гидроразрыва пласта

Формулы (14), (15) и (16) дают систему трех линейных уравнений с тремя неизвестными - дебитом Q и давлениями P трщ и P ПЗП. Решая методом исключения эту систему уравнений, для расчета дебита скважины с вертикальной трещиной гидроразрыва в ПЗП получим следующую формулу:

Составляя отношение дебита скважины после ГРП к дебиту этой же скважины без ГРП, для коэффициента эффективности ГРП получаем следующее выражение:

Сопоставительные расчеты дебитов скважин с ГРП по формулам (18) и выявили, что максимальные относительные расхождения не превышают 3-5%. В то же время в вычислительном плане формула (18) для практики предпочтительнее, так как она имеет более простую программную реализацию.

На практике формулы (18) и (19) позволяют рассчитать прогнозный дебит скважины, на которой планируется проведение операции гидроразрыва пласта, и, в конечном итоге, оценить ожидаемую технико-экономическую эффективность от проведения ГРП.

СПИСОК ЛИТЕРАТУРЫ

  1. Технология проектирования гидроразрыва пласта как элемента системы разработки газоконденсатных месторождений / О.П. Андреев [и др.]. - М.: ООО «Газпром экспо», 2009. -
    183 с.
  2. Кадет В.В., Селяков В.И. Фильтрация флюида в среде, содержащей эллиптическую трещину гидроразрыва // Изв. вузов. Нефть и газ. - 1988. - № 5. - С. 54-60.
  3. Каневская Р.Д., Кац Р.М. Аналитические решения задач о притоке жидкости к скважине с вертикальной трещиной гидроразрыва и их использование в численных моделях фильтрации //
    Изв. РАН. МЖГ. - 1996. - № 6. - С. 59-80.
  4. Производительность скважин. Руководство Хеманта Мукерджи. - М.: 2001.
  5. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. Нефтегазовая гидромеханика. - Москва-Ижевск: Институт компьютерных исследований, 2003. - 480 с.
  6. Иоссель Ю.Я., Кочанов Э.С., Струнский М.Г. Расчет электрической емкости. - Л.: Энергоиздат, 1981. - 288 с.

Библиографическая ссылка

Гасумов Р.А., Ахмедов К.С., Толпаев В.А. РАСЧЕТ ДЕБИТА ГАЗОДОБЫВАЮЩЕЙ СКВАЖИНЫ С ВЕРТИКАЛЬНОЙ ТРЕЩИНОЙ ГИДРОРАЗРЫВА ПЛАСТА // Успехи современного естествознания. – 2011. – № 2. – С. 78-82;
URL: http://natural-sciences.ru/ru/article/view?id=15932 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Дебит скважины - это основной параметр скважины , показывающий, сколько воды можно из нее получить за определенный промежуток времени. Измеряется данная величина в м 3 /день, м 3 /час, м 3 /мин. Следовательно, чем больше дебит скважины, тем выше ее производительность.

Определять дебит скважины нужно в первую очередь для того, чтобы знать на какой объем жидкости вы можете рассчитывать. Например, хватит ли воды для бесперебойного использования в ванной комнате, в огороде для полива и т.д. Кроме того, данный параметр отлично помогает в выборе насоса для подачи воды. Так, чем он больше, тем более производительный насос можно использовать. Если же покупать насос не обращая внимания на дебит скважины, то может случиться так, что он будет высасывать воду из скважины быстрей, чем она будет наполняться.

Статический и динамический уровни воды

Для того, чтобы рассчитать дебет скважины необходимо знать статический и динамический уровни воды. Первая величина обозначает уровень воды в спокойном состоянии , т.е. в тот момент, когда откачка воды еще не производилась. Вторая величина определяет устоявшийся уровень воды во время работы насоса , т.е. когда скорость ее выкачивания равна скорости наполнения скважины (вода перестает убывать). Другими словами, данный дебит напрямую зависит от производительности насоса, которая указывается в его паспорте.

Оба эти показателя измеряются от поверхности воды до поверхности земли. Единица измерения при этом чаще всего выбирается метр. Так, к примеру, уровень воды был зафиксирован на отметке 2 м, а после включения насоса он установился на отметке 3 м, следовательно, статический уровень воды равен 2 м, а динамический - 3 м.

Также здесь хотелось бы отметить, что если разница между двумя этими величинами не значительная (например, 0,5-1 м), то можно сказать, что дебет скважины большой и скорее всего выше производительности насоса.

Расчет дебита скважины

Как же определяется дебит скважины? Для этого требуется высокопроизводительный насос и мерная емкость для выкаченной воды, желательно, как можно больших размеров. Сам же расчет лучше рассматривать на конкретном примере.

Исходные данные 1:

  • Глубина скважины - 10 м .
  • Начало уровня фильтрационной зоны (зона забора воды с водоносного слоя) - 8 м .
  • Статический уровень воды - 6 м .
  • Высота столба воды в трубе - 10-6 = .
  • Динамический уровень воды - 8,5 м . Данная величина отражает оставшееся количество воды в скважине после откачки из нее 3 м 3 воды, при затраченном времени на это 1 час. Другими словами, 8,5 м - это динамический уровень воды при дебете 3 м 3 /час, который снизился на 2,5 м.

Расчет 1:

Дебит скважины рассчитывается по формуле:

D ск = (U/(H дин -Н ст))·H в = (3/(8,5-6))*4 = 4,8 м 3 /ч,

Вывод: дебет скважины равен 4,8 м 3 /ч .

Представленный расчет очень часто применяется бурильщиками. Но он несет в себе очень большую погрешность. Так как этот расчет предполагает, что динамический уровень воды будет увеличиваться прямопропорционально скорости выкачивания воды. Например, при увеличении откачки воды до 4 м 3 /ч, согласно ему, уровень воды в трубе падает на 5 м, а это неверно. Поэтому есть более точная методика с включением в расчет параметров второго водозабора для определения удельного дебита.

Что нужно при этом делать? Необходимо после первого водозабора и снятия данных (предыдущий вариант), дать воде устояться и вернуться к своему статическому уровню. После этого произвести выкачивание воды с другой скоростью, например, 4 м 3 /час.

Исходные данные 2:

  • Параметры скважины те же.
  • Динамический уровень воды - 9,5 м . При интенсивности водозабора 4 м 3 /ч.

Расчет 2:

Удельный дебит скважины рассчитывается по формуле:

D у = (U 2 -U 1)/(h 2 -h 1) = (4-3)/(3,5-2,5) = 1 м 3 /ч,

В итоге получается, что повышение динамического уровня воды на 1 м способствует приросту дебита на 1 м 3 /ч. Но это только при условии, что насос будет находиться не ниже начала фильтрационной зоны.

Реальный дебит здесь вычисляется по формуле:

D ск = (Н ф -Н ст)·D у = (8-6)·1 = 2 м 3 /ч,

  • H ф = 8 м - начало уровня фильтрационной зоны.

Вывод: дебет скважины равен 2 м 3 /ч .

После сравнения видно, что величины дебита скважины в зависимости от методики расчета отличаются друг от друга более, чем в 2 раза. Но второй расчет то же не точный. Дебит скважины, вычисленный через удельный дебит, лишь приближен к реальном значению.

Способы увеличения дебита скважины

В заключении хотелось бы упомянуть о том, как можно увеличить дебит скважины. Способа по сути дела два. Первый способ - это прочистить эксплуатационную трубу и фильтр в скважине. Второй заключается в том, чтобы проверить работоспособность насоса. Вдруг именно по его причине снизилось количество добываемой воды.

Газовые скважины эксплуатируют фонтанным способом, т.е. за счет использования энергии пласта. Расчет лифта сводится в определении диаметра фонтанных труб. Его можно определить из условий выноса забоя твердых и жидких частиц или обеспечить максимальное устьевое давление (минимальных потерь давления в стволе скважины при заданном дебите).

Вынос твердых и жидких частиц зависит от скорости газа. По мере подъема газа в трубах скорость возрастает вследствие увеличения объема газа при уменьшении давления. Расчет выполняют для условий башмака фонтанных труб. Глубину спуска труб в скважину принимают с учетом продуктивной характеристики пласта и технологического режима эксплуатации скважины.

Целесообразно спускать трубы до нижних отверстий перфорации. Если трубы спущены до верхних отверстий перфораций, то скорость газового потока в эксплутационной колонне напротив перфорированного продуктивного пласта снизу вверх возрастает от нуля до некоторого значения. Значит, в нижней части и вплоть до башмака не обеспечивается вынос твердых и жидких частиц. Поэтому нижняя часть пласта отсекается песчаноглинистой пробкой или жидкостью, при этом дебет скважины уменьшается.

Используем закон газового состояния Менделеева - Клапейрона

При заданном дебите скважины скорость газа у башмака труб равна:

где Q 0 - дебит скважины при стандартных условиях (давление P 0 = 0,1 МПа, температура T 0 = 273 К), м 3 /сут.;

P З, T З - давление и температура газа на забое, Па, К;

zo, zз - коэффициент сверхсжимаемости газа соответственно при условиях T 0 , P 0 и Т, Р;

F - площадь проходного сечения фонтанных труб, м 2

d - диаметр (внутренний) фонтанных труб, м.

Исходя из формул для расчета критической скорости выноса твердых и жидких частиц и согласно опытным данным, минимальная скорость v кр выноса твердых и жидких частиц с забоя составляет 5 - 10 м/с. Тогда максимальный диаметр труб, при котором частицы породы и жидкости выносятся на поверхность:

При эксплуатации газоконденсатных скважин из газа выделяют жидкие углеводороды (газоконденсат), которые создают в фонтанных трубах двухфазный поток. Чтобы предотвратить накопление жидкости на забое и снижение дебита, газоконденсатная скважина должна эксплуатироваться с дебитом не меньше минимально допустимого, обеспечивающего вынос газокондесата на поверхность. Величину этого дебита определяют по эмпирической формуле:

где М - молекулярная масса газа. Тогда диаметр труб:

При определении диаметра фонтанных труб, из условия обеспечения минимальных потерь давления в стволе скважины, необходимо предусмотреть их снижения в стволе до минимальных с тем, чтобы газ поступал на устья скважины с возможным большим давлением. Тогда уменьшатся затраты на транспорт газа. Забойное и устьевое давления газовой скважины увязаны между собой формулой Г.А.Адамова.

где P 2 - давление на устье скважины, МПа;

e - основание натуральных логарифмов;

s - показатель степени, равный s = 0,03415 с г L / (Т ср z ср);

с г - относительная плотность газа по воздуху;

L - длина фонтанных труб, м;

d - диаметр труб, м;

Т ср - средняя температура газа в скважине, К;

Qo - дебит скважины при стандартных условиях, тыс.м 3 /сут.;

л - коэффициент гидравлического сопротивления;

z ср - коэффициент сверхсжимаемости газа при средней температуре Т ср и среднем давлением Р ср = (Pз + P 2) / 2.

Так как P З неизвестно, то z ср определяет методом последовательных приближений. Тогда, если дебит скважины Qo и соответствующие ему забойное давление P З известны по результатам газодинамических исследований, при заданном давлении на устье P 2 диаметр фонтанных труб определяем из формулы в виде:

Фактический диаметр фонтанных труб выбирают с учетом стандартных диаметров. Отметим, что при расчетах, исходя из двух условий, определяющий фактор - вынос частиц породы и жидкости на поверхность. Если же дебиты скважины ограничиваются другими факторами, то расчет ведется из условия снижения потерь давлений до минимально возможной величины с технологической и технической точек зрения. Иногда при заданном диаметре труб, используя выписанные формулы, определяют дебит скважины или потери давления в стволе.

Расчет лифта сводится в определении диаметра насосно-компрессорных труб (Таблица 18 А Приложения А). Исходные данные: дебит скважины при стандартных условиях Q o = 38,4 тыс. м 3 /сут.= 0,444 м 3 /с (давление Р о = 0,1 МПа, температура Т о = 293 К); забойное давление Р з = 10,1 МПа; глубина скважины Н = 1320 м; коэффициент сжимаемости газа при стандартных условиях z о = 1; критическая скорость выноса твердых и жидких частиц на поверхность х кр = 5 м /с.

1) Температура скважины Т определим по формуле:

Т = Н? Г, (19)

где Н - глубина скважины, м

Г - геотермический градиент.

2) Коэффициент сжимаемости газа z з определим по кривой Брауна (Рисунок 6 Б Приложения Б). Для этого найдем приведенные давление Р пр и температуру Т пр:

где Р пл - пластовое давление, МПа

Р кр - критическое давление, МПа

Для метана Р кр = 4,48 МПа

где Т кр - критическая температура, К

Для метана Т кр = - 82,5? С = 190,5 К

Коэффициент сжимаемости газа на забое z з = 0,86 определяем по рисунку 6 Б (Приложение Б).

1) Диаметр насосно-компре...

  • - суточный объем газа q, нм 3 /сут.,
  • - начальное и конечное давление в газопроводе Р 1 и Р 2 , МПа;
  • - начальная и конечная температура t 1 и t 2 , о С;
  • - концентрация свежего метанола C 1 , % масс.

Расчет индивидуальной нормы расхода метанола на технологический процесс при подготовке и транспортировке природного и нефтяного газа по каждому участку ведется по формуле:

H Ti = q ж + q г + q к, (23)

где H Ti - индивидуальная норма расхода метанола по i-му участку;

q ж - количество метанола, необходимое для насыщения жидкой фазы;

q г - количество метанола, необходимое для насыщения газообразной фазы;

q к - количество метанола, необходимое для насыщения конденсата.

Количество метанола q ж (кг/1000 м 3), необходимое для насыщения жидкой фазы, определяется по формуле:

где ДW - количество отбираемой влаги из газа, кг/1000 м 3 ;

С 1 - весовая концентрация вводимого метанола, %;

С 2 - весовая концентрация метанола в воде (концентрация отработанного метанола в конце участка, на котором образуются гидраты), %;

Из формулы 24 следует, что для определения количества метанола для насыщения жидкой фазы необходимо знать влажность газа и концентрацию метанола в двух точках: в начале и в конце участка, на котором возможно образование гидратов.

Влажность углеводородных газов с относительной плотностью (по воздуху) 0,60, не содержащих азот и насыщенных пресной водой.

Определив влажность газа в начале участка W 1 и в конце участка W 2, находят количество влаги ДW, выделяющиеся из каждых 1000 м 3 проходящего газа:

ДW = W 2 - W 1 (25)

Определим влажность по формуле:

где Р - давление газа, МПа;

А - коэффициент, характеризующий влажность идеального газа;

В - коэффициент, зависящий от состава газа.

Для определения концентрации отработанного метанола С 2 вначале определяют равновесную температуру Т (° С) гидратообразования. Для этого используют равновесные кривые образования гидратов газов различной плотности (Рисунок 7 Б Приложения Б) на основе среднего давления на участке подачи метанола:

где Р 1 и Р 2 - давление в начале и конце участка, МПа.

Определив Т, находят величину снижения ДТ равновесной температуры, необходимую для предотвращения гидратообразования:

ДТ = Т - Т 2 , (28)

где Т 2 - температура на конце участка, на котором образуются гидраты, ° С.

После определения ДТ, по графику на рисунке 8 Б (Приложение Б) находим концентрацию обработанного метанола С 2 (%).

Количество метанола (q г, кг/1000 м 3), необходимое для насыщения газообразной среды, определяется по формуле:

q г = к м · С 2 , (29)

где к м - отношение содержания метанола, необходимое для насыщения газа, к концентрации метанола в жидкости (растворимость метанола в газе).

Коэффициент к м определяется для условий конца участка, на котором возможно образование гидратов, по рисунку 9 Б (Приложение Б) для давления Р 2 и температуры Т 2 .

Количество подачи метанола (Таблицы 20 А - 22 А Приложения А) с учетом дебита определяется по формуле.

Работы по созданию скважины на придомовом участке предусматривают бурение, укрепление оголовки. По завершению, фирма, которая выполняла заказ, составляет документ на скважину. В паспорте указывают параметры сооружения, характеристики, измерения и расчет скважины.

Процедура проведения расчета скважины

Работники компании составляют протокол осмотра и акт передачи в пользование.

Процедуры являются обязательными, поскольку дают возможность получить документальное подтверждение исправности конструкции, возможности введения ее в эксплуатацию.

В документацию вносят геологические параметры и технологические характеристики:


Для того, чтобы проверить правильность подсчета, запускают пробную качку воды на большой мощности насоса. Это позволяет улучшить показатели динамики

На практике для точности расчета пользуются второй формулой. После получения значений дебита, определяют средний показатель, позволяющий точно определить рост продуктивности при увеличении динамики на 1 м.

Формула расчета:

D уд = D2 – D1/H2 – H1

  • Dуд – дебит удельный;
  • D1, H1 — показатели первого испытания;
  • D2, H2 — показатели второго испытания.

Лишь при помощи проведения исчислений подтверждается правильность выполнения исследований и бурения водозабора.

Расчетные характеристики на практике

Знакомство с методами расчета водозаборной скважины провоцирует возникновение вопроса – зачем нужны эти знания обычному пользователю водозабора? Здесь важно понимать, что водоотдача – единый способ оценивания работоспособности скважины, для того чтобы удовлетворить потребность жильцов в воде до подписания акта приема-передачи.

Чтобы в дальнейшем не возникало проблем, действуйте следующим образом:

  1. Расчет проводится с учетом количества жильцов дома. Средний показатель потребления воды – 200 л на одного человека. Сюда прибавляют расходы на хозяйственные нужды и техническое использование. При расчете на семью из 4-х человек получаем наибольшее потребление воды 2,3 кубометра/час.
  2. В процессе составления договора в проекте берется значение продуктивности водозабора на уровне не меньше 2,5 — 3 м 3 /ч.
  3. После завершения работ и расчета уровня скважины, производят откачку воды, замер динамики и определение водоотдачи при наибольшем расходе домашнего насоса.

Проблемы могут возникнуть на уровне расчета дебита скважины на воду в процессе контрольной выкачки насосом, принадлежащим компании исполнителю.

Моменты, которые определяют скорость наполнения скважины водой:

  1. Объем слоя воды;
  2. Быстрота его уменьшения;
  3. Глубина залегания грунтовых вод и изменения уровня в зависимости от сезона.

Скважины с продуктивностью забора воды менее 20 м 3 /сут., считаются малопродуктивными.

Причины низких показателей дебита:

  • особенности гидрогеологической ситуации местности;
  • изменения в зависимости от времени года;
  • замусоривание фильтров;
  • засоры в трубах, которые подают воду наверх либо их дефлорация;
  • естественный износ насоса.

Если после ввода скважины в работу обнаружены проблемы, это говорит о том, что на стадии расчета параметров были ошибки. Поэтому этот этап – один из самых важных, который нельзя упускать из виду.


Для того чтобы увеличить продуктивность работы водозабора, увеличивают глубину скважины с целью вскрытия дополнительного слоя воды.

Также, используют методы выкачки воды опытным путем, применяют химическое и механическое воздействия на водные слои, либо переносят скважину в другое место.