Из истории развития теории поля. Понятие взаимодействия и движения. Концепции близкодействия и дальнодействия


Дальнодействие и близкодействие – две противоречащие друг другу теории классической физики, появившиеся в начале её зарождения.

Дальнодействие можно представит как мгновенное распространение гравитационных и электрических сил через пустое абсолютное пространство, в котором силы находят свою конечную цель благодаря божественному провидению.

Концепция близкодействия, основоположниками, которой были Декарт, Френель и Фарадей опиралась на понимание пространства как протяженности вещества и эфира, в котором свет распространялся с конечной скоростью в виде волн.

Имена данная концепция в последующем определила понятие поля, от точки к точке которого и передавалось взаимодействие. Данное представление взаимодействия и пространства, в физике, было развито далее в XX веке, в постулатах теории относительности и квантовой механики. Пространство и время вновь стали пониматься как атрибуты материи, определяющиеся ее связями и взаимодействиями.

Современное представление о времени и пространстве было сформулировано в теории относительности Эйнштейна.

Согласно теории дальнодействия, тела действуют друг на друга без посредников, через пустоту, на любом расстоянии, и такое взаимодействие осуществляется с бесконечно большой скоростью. Примером дальнодействия можно считать силу всемирного тяготения в классической теории гравитации Ньютона.

Согласно концепции близкодействия, тело может действовать только на своё непосредственное окружение, а всякое действие на расстоянии должно осуществляться при помощи тех или иных посредников.

Принципиальное отличие двух концепций можно рассмотреть на примере – взаимодействии двух точечных частиц.
Концепция близкодействия постулирует, что в процессе этого взаимодействия частица А испускает другую частицу – С, при этом ее скорость и импульс меняются, согласно законам сохранения. Частица С поглощается частицей В, что, в свою очередь, приводит к изменению импульса и скорости последней. В результате создается иллюзия непосредственного влияния частиц друг на друга.

В физике нашего времени существует явное разграничение материи на источники взаимодействий, которые называются веществом и частицы-переносчики взаимодействий, которые называются поле.

Значительным отличием концепции близкодействия от концепции дальнодействия служит существование максимальной скорости распространения взаимодействий то есть скорости света.

Динамические законы представляют собой физические законы, отображающие объективную закономерность в форме однозначной связи определённых физических величин количественно выраженных.

Первым динамическим законом является динамическая механика Ньютона. Позже Лаплас абсолютизировал динамические закономерности и вывел принцип, согласно которому все явления в мире детерминированы, т.е. предопределены необходимостью, случайных же явлений и событий не существует.

Вместе с динамическими законами существуют законы вероятностные, то есть вероятностное прогнозирование объективных закономерностей на основе вероятностных законов. Они называются статистическими законами. Данные законы гласят, что предсказать событие можно не однозначно, а с определенной степенью вероятности.

Вероятностными эти законы называются потому, что заключения, основанные на них, не могут быть однозначными, по причине того, что сама информация носит статистический характер, эти законы называют статистическими. Основоположником их можно считать Максвелла. Вероятность имеет объективный характер, то есть из определённого множества событий можно выявить некую закономерность и выразить её определённым числом.



Понятие взаимодействия. Концепция дальнодействия и близкодействия

Под взаимодействием в более узком смысле понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией.

В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному . Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий.

Концепции дальнодействия и близкодействия

Близкодействие и дальнодействие --это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепции близкодействия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени. Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.

Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое)

1. Гравитационное взаимодействие является универсальным, однако в микромире не учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица- гравитон- пока не обнаружена.

(И. Ньютон) - самое слабое взаимодействие.

2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t ~ 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица-переносчик - фотон (г-квант).

3. Слабое взаимодействие связано со всеми видами в-распада, им обусловлены многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t ~ 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10 -18 м. Частицы-переносчики - промежуточный векторный бозон: W + , W - , Z 0 . (Ферми).

4. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия принимается равной1, радиус действия порядка 10 -15 м, время протекания t ~10 -23 с. Сильное взаимодействие осуществляется между кварками - частицами, из которых состоят протоны и нейтроны - c помощью т.н. глюонов. (Юкава).

Взаимодействие материи – неотъемлемое свойство материи, выступающее как причина движения материи.

Фундаментальные взаимодействия - различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел.

Существуют четыре типа взаимодействия:

1. Гравитационное взаимодействие – ответственно за взаимодействие между телами, обладающими массой. Является определяющим в мегамире – мире планет, звезд, галактик.

2. Электромагнитное взаимодействие - ответственно за взаимодействия между электрически заряженными частицами и телами. Существенно в макромире и атомных явлениях. Определяет строение и свойства атомов и молекул.

3. Сильное взаимодействие - ответственно за взаимодействие между кварками и адронами, за связь нуклонов в ядре. Является определяющим в микромире.

4. Слабое взаимодействие - ответственно за другие виды взаимодействия между элементарными частицами - все виды бета-распада ядер, процессы взаимодействия нейтрино с веществом, за многие распады элементарных частиц. Проявляет себя в микромире.

Рационалистическое мировоззрение предполагает, что любое событие имеет материальную причину: воздействие со стороны материального тела (тел). Поэтому любая программа рационального объяснения окружающего мира включает в себя представления о механизмах взаимодействия материальных объектов.

Концепция близкодействия предполагает, что взаимодействие возможно только при непосредственном контакте взаимодействующих объектов, любое действие на расстоянии должно передаваться через материальных посредников, так называемых переносчиков взаимодействия, с конечной скоростью.

Концепция дальнодействия предполагает, что взаимодействие материальных тел не требует материального посредника и может передаваться мгновенно.

Концепция близкодействия была выдвинута Аристотелем, который был убежден в отсутствие пустоты в мире. Следовательно, между любыми двумя взаимодействующими телами располагается ряд примыкающих друг к другу других тел, которые передают взаимодействие при непосредственном контакте.

В XVII в. концепция близкодействия была развита Рене Декартом. В механике Декарта взаимодействие происходит только путём давления или удара, т.е. при соприкосновении тел.

Концепция дальнодействия прослеживалась в атомистической теории Демокрита и Левкиппа, так как взаимодействие между атомами передавалось через пустоту.

В механической картине мира , основоположником которой был Исаак Ньютон, принята концепция дальнодействия, при этом считалось, что действие одного тела на другое – это всегда и действие второго на первое, то есть взаимодействие.

В конце XIX в. возникла новая идея – идея поля, основная роль которого – передача взаимодействия. Майкл Фарадей выдвинул идею электромагнитного поля, передающего взаимодействие при электризации проводников и намагничивании вещества. Развил и математически оформил эту идею Максвелл. Таким образом, в основе электромагнитной научной картине мира лежит концепция близкодействия. Механизм передачи взаимодействия с помощью поля состоит в следующем. Тело, участвующее во взаимодействии, создает вокруг себя поле, которое занимает область пространства радиусом равным радиусу взаимодействия. Другие тела взаимодействуют не непосредственно с первым телом, а с созданным им полем в тех точках, где они находятся. Изменение состояния одного из взаимодействующих тел вызывает возмущение созданного им поля, которое распространяется в виде волны, достигает других тел, и только тогда их состояние начинает изменяться. Наряду с электромагнитным полем, которое переносит электромагнитные взаимодействия, в электромагнитной картине мира рассматривается также гравитационное поле – переносчик гравитационных сил.

В современной картине мира идея поля получила дальнейшее развитие. Полевой механизм взаимодействия был уточнен в квантово-полевой механизм . С позиций современной физики все формы существования материи дискретны. Возмущение поля – волна – согласно корпускулярно-волновому дуализму, может одновременно рассматриваться как совокупность частиц – квантов полей. Поэтому взаимодействие, переносимое полем, рассматривается как процесс обмена квантами поля между взаимодействующими телами и частицами вещества. Кванты, которыми обмениваются взаимодействующие тела, представляют собой не обычные частицы, а виртуальные частицы. Виртуальные частицы отличаются тем, что обнаружить их за время их существования невозможно. Об их существовании и свойствах можно судить только косвенно – по силе переносимого взаимодействия. Непосредственно зарегистрировать виртуальную частицу нельзя. Например, виртуальный фотон по зрительному ощущению на сетчатке глаза зарегистрировать нельзя. Описание механизма взаимодействия на языке обмена виртуальными частицами не исключает, а дополняет классическое описание на языке полей и волн. Таким образом, концепция дальнодействия в науке оказалась отброшенной окончательно.

Действие на расстоянии представляет собой взаимодействие объектов между собой, не используя при этом никаких посредников. Согласно этой теории между взаимодействующими объектами находится пустота. То есть отрицается наличие, какого либо агента передающего воздействие от одного тела к другому.

Рисунок 1 — дальнодействие на примере двух зарядов

Также считается, что это самое воздействие передается бесконечно быстро. Ну, или, по крайней мере, со скоростью света. Расстояние также может быть любым, действие тел друг на друга всё равно будет происходить.

В качестве примера теории действия на расстоянии приводится сила всемирного тяготения. Которая описана в классической теории гравитации Ньютона. Но, тем не менее, хотя сам Ньютон и открыл гравитацию он так и не смог объяснит механизм ее работы. То бишь луна притягивается к земле без постороннего физического агента, как и земля к солнцу, но вот каков механизм этого взаимодействия он так и не объяснил.

Рисунок 2 — притяжение луны к земле

Ученые того времени не сразу приняли теорию дальнодействия. Они всё-таки пытались адаптировать законы механики к явлениям, которые объяснялись с помощью теории действия на расстоянии. При этом использовали теорию близкодействия. Которая сводилась к тому, что тела находящиеся на расстоянии не могут взаимодействовать между собой непосредственно. То есть, чтобы сила передавалась от одного тела к другому, нужен какой либо физический посредник.

В результате адаптации возникло такое понятие как эфир. Да-да тот самый эфир, который вспоминают при теле или радиовещании. Суть эфира заключается в том, что он и взял на себя функции той физической среды, которая должна являться посредником для передачи силы между телами. То есть, используя понятия эфира, можно применить теорию близкодействия к явлению скажем гравитации. Одно тело давит на эфир, который, сжимаясь, передает воздействие на другое тело.

Рисунок 3 — эфирная частица заполняющая вакуум

К слову считалось, что эфир заполняет пространство внутри атома между ядром и электронами. Он та и являлся связующим звеном между ними, так как выходила, что внутри твердых физических тел на самом деле находилась пустота. Электромагнитная волна, испускаемая все при том же радиовещании, так же распространялась благодаря эфиру.

Но в итоге от понятия эфира пришлось отказаться. Хотя оно конечно и давало объяснение каким образом взаимодействуют тела находящиеся на расстоянии но математически доказать это не удалось. Не противоречивую теорию, включающую в себя близкодействие и понятие эфира, так и не сформировали.

Современная физика проводи четкую границу в материальных частицах. Одни из них являются источниками вызывающими взаимодействие, к примеру, носители заряда. То есть это непосредственно вещество скажем металл. А другие только переносят это взаимодействие, их называют полем.

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Вы сейчас здесь: Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.