Кислород: химические свойства элемента. Строение атома кислорода

Содержание статьи

КИСЛОРОД, O (oxygenium), химический элемент VIA подгруппы периодической системы элементов: O, S, Se, Te, Po – член семейства халькогенов. Это наиболее распространенный в природе элемент, его содержание составляет в атмосфере Земли 21% (об.), в земной коре в виде соединений ок. 50% (масс.) и в гидросфере 88,8% (масс.).

Кислород необходим для существования жизни на земле: животные и растения потребляют кислород в процессе дыхания, а растения выделяют кислород в процессе фотосинтеза. Живая материя содержит связанный кислород не только в составе жидкостей организма (в клетках крови и др.), но и в составе углеводов (сахар, целлюлоза, крахмал, гликоген), жиров и белков. Глины, горные породы состоят из силикатов и других кислородсодержащих неорганических соединений, таких, как оксиды, гидроксиды, карбонаты, сульфаты и нитраты.

Историческая справка.

Первые сведения о кислороде стали известны в Европе из китайских рукописей 8 в. В начале 16 в. Леонардо да Винчи опубликовал данные, связанные с химией кислорода, не зная еще, что кислород – элемент. Реакции присоединения кислорода описаны в научных трудах С.Гейлса (1731) и П.Байена (1774). Заслуживают особого внимания исследования К.Шееле в 1771–1773 взаимодействия металлов и фосфора с кислородом. Дж.Пристли сообщил об открытии кислорода как элемента в 1774, спустя несколько месяцев после сообщения Байена о реакциях с воздухом. Название oxygenium («кислород») дано этому элементу вскоре после его открытия Пристли и происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с ошибочным представлением о том, что кислород присутствует во всех кислотах. Объяснение роли кислорода в процессах дыхания и горения, однако, принадлежит А.Лавуазье (1777).

Строение атома.

Любой природный атом кислорода содержит 8 протонов в ядре, но число нейтронов может быть равно 8, 9 или 10. Наиболее распространенный из трех изотопов кислорода (99,76%) – это 16 8 O (8 протонов и 8 нейтронов). Содержание другого изотопа, 18 8 O (8 протонов и 10 нейтронов), составляет всего 0,2%. Этот изотоп используется как метка или для идентификации некоторых молекул, а также для проведения биохимических и медико-химических исследований (метод изучения нерадиоактивных следов). Третий нерадиоактивный изотоп кислорода 17 8 O (0,04%) содержит 9 нейтронов и имеет массовое число 17. После того как в 1961 масса изотопа углерода 12 6 C была принята Международной комиссией за стандартную атомную массу, средневзвешенная атомная масса кислорода стала равна 15,9994. До 1961 стандартной единицей атомной массы химики считали атомную массу кислорода, принятую для смеси трех природных изотопов кислорода равной 16,000. Физики за стандартную единицу атомной массы принимали массовое число изотопа кислорода 16 8 O, поэтому по физической шкале средняя атомная масса кислорода составляла 16,0044 .

В атоме кислорода 8 электронов, при этом 2 электрона находятся на внутреннем уровне, а 6 электронов – на внешнем. Поэтому в химических реакциях кислород может принимать от доноров до двух электронов, достраивая свою внешнюю оболочку до 8 электронов и образуя избыточный отрицательный заряд .

Молекулярный кислород.

Как большинство других элементов, у атомов которых для достройки внешней оболочки из 8 электронов не хватает 1–2 электронов, кислород образует двухатомную молекулу. В этом процессе выделяется много энергии (~490 кДж/моль) и соответственно столько же энергии необходимо затратить для обратного процесса диссоциации молекулы на атомы. Прочность связи O–O настолько высока, что при 2300° С только 1% молекул кислорода диссоциирует на атомы. (Примечательно, что при образовании молекулы азота N 2 прочность связи N–N еще выше, ~710 кДж/моль.)

Электронная структура.

В электронной структуре молекулы кислорода не реализуется, как можно было ожидать, распределение электронов октетом вокруг каждого атома, а имеются неспаренные электроны, и кислород проявляет свойства, типичные для такого строения (например, взаимодействует с магнитным полем, являясь парамагнетиком).

Реакции.

В соответствующих условиях молекулярный кислород реагирует практически с любым элементом, кроме благородных газов. Однако при комнатных условиях только наиболее активные элементы реагируют с кислородом достаточно быстро. Вероятно, большинство реакций протекает только после диссоциации кислорода на атомы, а диссоциация происходит лишь при очень высоких температурах. Однако катализаторы или другие вещества в реагирующей системе могут способствовать диссоциации O 2 . Известно, что щелочные (Li, Na, K) и щелочноземельные (Ca, Sr, Ba) металлы реагируют с молекулярным кислородом с образованием пероксидов:

Получение и применение.

Благодаря наличию свободного кислорода в атмосфере наиболее эффективным методом его извлечения является сжижение воздуха, из которого удаляют примеси, CO 2 , пыль и т.д. химическими и физическими методами. Циклический процесс включает сжатие, охлаждение и расширение, что и приводит к сжижению воздуха. При медленном подъеме температуры (метод фракционной дистилляции) из жидкого воздуха испаряются сначала благородные газы (наиболее трудно сжижаемые), затем азот и остается жидкий кислород. В результате жидкий кислород содержит следы благородных газов и относительно большой процент азота. Для многих областей применения эти примеси не мешают. Однако для получения кислорода особой чистоты процесс дистилляции необходимо повторять. Кислород хранят в танках и баллонах. Он используется в больших количествах как окислитель керосина и других горючих в ракетах и космических аппаратах. Сталелитейная промышленность потребляет газообразный кислород для продувки через расплав чугуна по методу Бессемера для быстрого и эффективного удаления примесей C, S и P. Сталь при кислородном дутье получается быстрее и качественнее, чем при воздушном. Кислород используется также для сварки и резки металлов (кислородно-ацетиленовое пламя). Применяют кислород и в медицине, например, для обогащения дыхательной среды пациентов с затрудненном дыханием. Кислород можно получать различными химическими методами, и некоторые из них применяют для получения малых количеств чистого кислорода в лабораторной практике.

Электролиз.

Один из методов получения кислорода – электролиз воды, содержащей небольшие добавки NaOH или H 2 SO 4 в качестве катализатора: 2H 2 O ® 2H 2 + O 2 . При этом образуются небольшие примеси водорода. С помощью разрядного устройства следы водорода в газовой смеси вновь превращают в воду, пары которой удаляют вымораживанием или адсорбцией.

Термическая диссоциация.

Важный лабораторный метод получения кислорода, предложенный Дж.Пристли, заключается в термическом разложении оксидов тяжелых металлов: 2HgO ® 2Hg + O 2 . Пристли для этого фокусировал солнечные лучи на порошок оксида ртути. Известным лабораторным методом является также термическая диссоциация оксосолей, например хлората калия в присутствии катализатора – диоксида марганца:

Диоксид марганца, добавляемый в небольших количествах перед прокаливанием, позволяет поддерживать требуемую температуру и скорость диссоциации, причем сам MnO 2 в процессе не изменяется.

Используются также способы термического разложения нитратов:

а также пероксидов некоторых активных металлов, например:

2BaO 2 ® 2BaO + O 2

Последний способ одно время широко использовался для извлечения кислорода из атмосферы и заключался в нагревании BaO на воздухе до образования BaO 2 с последующим термическим разложением пероксида. Способ термического разложения сохраняет свое значение для получения пероксида водорода.

НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА
Атомный номер 8
Атомная масса 15,9994
Температура плавления, °С –218,4
Температура кипения, °С –183,0
Плотность
твердый, г/см 3 (при t пл) 1,27
жидкий г/см 3 (при t кип) 1,14
газообразный, г/дм 3 (при 0° С) 1,429
относительная по воздуху 1,105
критическая а, г/см 3 0,430
Критическая температура а, °С –118,8
Критическое давление а, атм 49,7
Растворимость, см 3 /100 мл растворителя
в воде (0° С) 4,89
в воде (100° С) 1,7
в спирте (25° С) 2,78
Радиус, Å 0,74
ковалентный 0,66
ионный (О 2–) 1,40
Потенциал ионизации, В
первый 13,614
второй 35,146
Электроотрицательность (F = 4) 3,5
а Температура и давление, при которых плотность газа и жидкости одинаковы.

Физические свойства.

Кислород при нормальных условиях – бесцветный газ без запаха и вкуса. Жидкий кислород имеет бледно-голубой цвет. Твердый кислород существует по крайней мере в трех кристаллических модификациях. Газообразный кислород растворим в воде и, вероятно, образует непрочные соединения типа O 2 Ч H 2 O, а возможно, и O 2 Ч 2H 2 O.

Химические свойства.

Как уже упоминалось, химическая активность кислорода определяется его способностью диссоциировать на атомы O, которые и отличаются высокой реакционной способностью. Только наиболее активные металлы и минералы реагируют с O 2 c высокой скоростью при низких температурах. Наиболее активные щелочные (IA подгруппы) и некоторые щелочноземельные (IIA подгруппы) металлы образуют с O 2 пероксиды типа NaO 2 и BaO 2 . Другие же элементы и соединения реагируют только с продуктом диссоциации O 2 . В подходящих условиях все элементы, исключая благородные газы и металлы Pt, Ag, Au, реагируют с кислородом. Эти металлы тоже образуют оксиды, но при особых условиях.

Электронная структура кислорода (1s 2 2s 2 2p 4) такова, что атом O принимает для образования устойчивой внешней электронной оболочки два электрона на внешний уровень, образуя ион O 2– . В оксидах щелочных металлов образуется преимущественно ионная связь. Можно полагать, что электроны этих металлов практически целиком оттянуты к кислороду. В оксидах менее активных металлов и неметаллов переход электронов неполный, и плотность отрицательного заряда на кислороде менее выражена, поэтому связь менее ионная или более ковалентная.

При окислении металлов кислородом происходит выделение тепла, величина которого коррелирует с прочностью связи M–O. При окислении некоторых неметаллов происходит поглощение тепла, что свидетельствует об их менее прочных связях с кислородом. Такие оксиды термически неустойчивы (или менее стабильны, чем оксиды с ионной связью) и часто отличаются высокой химической активностью. В таблице приведены для сравнения значения энтальпий образования оксидов наиболее типичных металлов, переходных металлов и неметаллов, элементов A- и B-подгрупп (знак минус означает выделение тепла).

О свойствах оксидов можно сделать несколько общих выводов:

1. Температуры плавления оксидов щелочных металлов уменьшаются с ростом атомного радиуса металла; так, t пл (Cs 2 O) t пл (Na 2 O). Оксиды, в которых преобладает ионная связь, имеют более высокие температуры плавления, чем температуры плавления ковалентных оксидов: t пл (Na 2 O) > t пл (SO 2).

2. Оксиды химически активных металлов (IA–IIIA подгрупп) более термически стабильны, чем оксиды переходных металлов и неметаллов. Оксиды тяжелых металлов в высшей степени окисления при термической диссоциации образуют оксиды с более низкими степенями окисления (например, 2Hg 2+ O ® (Hg +) 2 O + 0,5O 2 ® 2Hg 0 + O 2). Такие оксиды в высоких степенях окисления могут быть хорошими окислителями.

3. Наиболее активные металлы взаимодействуют с молекулярным кислородом при повышенных температурах с образованием пероксидов:

Sr + O 2 ® SrO 2 .

4. Оксиды активных металлов образуют бесцветные растворы, тогда как оксиды большинства переходных металлов окрашены и практически нерастворимы. Водные растворы оксидов металлов проявляют основные свойства и являются гидроксидами, содержащими OH-группы, а оксиды неметаллов в водных растворах образуют кислоты, содержащие ион H + .

5. Металлы и неметаллы A-подгрупп образуют оксиды со степенью окисления, соответствующей номеру группы, например, Na, Be и B образуют Na 1 2 O, Be II O и B 2 III O 3 , а неметаллы IVA–VIIA подгрупп C, N, S, Cl образуют C IV O 2 , N V 2 O 5 , S VI O 3 , Cl VII 2 O 7 . Номер группы элемента коррелирует только с максимальной степенью окисления, так как возможны оксиды и с более низкими степенями окисления элементов. В процессах горения соединений типичными продуктами являются оксиды, например:

2H 2 S + 3O 2 ® 2SO 2 + 2H 2 O

Углеродсодержащие вещества и углеводороды при слабом нагревании окисляются (сгорают) до CO 2 и H 2 O. Примерами таких веществ являются топлива – древесина, нефть, спирты (а также углерод – каменный уголь, кокс и древесный уголь). Тепло от процесса горения утилизируется на производство пара (а далее электричества или идет на силовые установки), а также на отопление домов. Типичные уравнения для процессов горения таковы:

а) древесина (целлюлоза):

(C 6 H 10 O 5) n + 6n O 2 ® 6n CO 2 + 5n H 2 O + тепловая энергия

б) нефть или газ (бензин C 8 H 18 или природный газ CH 4):

2C 8 H 18 + 25O 2 ® 16CO 2 + 18H 2 O + тепловая энергия

CH 4 + 2O 2 ® CO 2 + 2H 2 O + тепловая энергия

C 2 H 5 OH + 3O 2 ® 2CO 2 + 3H 2 O + тепловая энергия

г) углерод (каменный или древесный уголь, кокс):

2C + O 2 ® 2CO + тепловая энергия

2CO + O 2 ® 2CO 2 + тепловая энергия

Горению подвержены также ряд C-, H-, N-, O-содержащих соединений с высоким запасом энергии. Кислород для окисления может использоваться не только из атмосферы (как в предыдущих реакциях), но и из самого вещества. Для инициирования реакции достаточно небольшого активирования реакции, например удара или встряски. При этих реакциях продуктами горения также являются оксиды, но все они газообразны и быстро расширяются при высокой конечной температуре процесса. Поэтому такие вещества являются взрывчатыми. Примерами взрывчатых веществ служат тринитроглицерин (или нитроглицерин) C 3 H 5 (NO 3) 3 и тринитротолуол (или ТНТ) C 7 H 5 (NO 2) 3 .

Оксиды металлов или неметаллов с низшими степенями окисления элемента реагируют с кислородом с образованием оксидов высоких степеней окисления этого элемента:

Оксиды природные, полученные из руд или синтезированные, служат сырьем для получения многих важных металлов, например, железа из Fe 2 O 3 (гематит) и Fe 3 O 4 (магнетит), алюминия из Al 2 O 3 (глинозем), магния из MgO (магнезия). Оксиды легких металлов используются в химической промышленности для получения щелочей или оснований. Пероксид калия KO 2 находит необычное применение, так как в присутствии влаги и в результате реакции с ней выделяет кислород. Поэтому KO 2 применяют в респираторах для получения кислорода. Влага из выдыхаемого воздуха выделяет в респираторе кислород, а KOH поглощает CO 2 . Получение оксида CaO и гидроксида кальция Ca(OH) 2 – многотоннажное производство в технологии керамики и цемента.

Вода (оксид водорода).

Важность воды H 2 O как в лабораторной практике для химических реакций, так и в процессах жизнедеятельности требует особого рассмотрения этого вещества ВОДА, ЛЕД И ПАР) . Как уже упоминалось, при прямом взаимодействии кислорода и водорода в условиях, например, искрового разряда происходят взрыв и образование воды, при этом выделяется 143 кДж/(моль H 2 O).

Молекула воды имеет почти тетраэдрическое строение, угол H–O–H равен 104° 30ў . Связи в молекуле частично ионные (30%) и частично ковалентные с высокой плотностью отрицательного заряда у кислорода и соответственно положительных зарядов у водорода:

Из-за высокой прочности связей H–O водород с трудом отщепляется от кислорода и вода проявляет очень слабые кислотные свойства. Многие свойства воды определяются распределением зарядов. Например, молекула воды образует с ионом металла гидрат:

Одну электронную пару вода отдает акцептору, которым может быть H + :

Оксоанионы и оксокатионы

– кислородсодержащие частицы, имеющие остаточный отрицательный (оксоанионы) или остаточный положительный (оксокатионы) заряд. Ион O 2– имеет высокое сродство (высокую реакционную способность) к положительно заряженным частицам типа H + . Простейшим представителем стабильных оксоанионов является гидроксид-ион OH – . Это объясняет неустойчивость атомов с высокой зарядовой плотностью и их частичную стабилизацию в результате присоединения частицы с положительным зарядом. Поэтому при действии активного металла (или его оксида) на воду образуется OH – , а не O 2– :

2Na + 2H 2 O ® 2Na + + 2OH – + H 2

Na 2 O + H 2 O ® 2Na + + 2OH –

Более сложные оксоанионы образуются из кислорода с ионом металла или неметаллической частицей, имеющей большой положительный заряд, в результате получается низкозаряженная частица, обладающая большей стабильностью, например:

° С образуется темнопурпуровая твердая фаза. Жидкий озон слаборастворим в жидком кислороде, а в 100 г воды при 0° С растворяется 49 см 3 O 3 . По химическим свойствам озон намного активнее кислорода и по окислительным свойствам уступает только O, F 2 и OF 2 (дифториду кислорода). При обычном окислении образуются оксид и молекулярный кислород O 2 . При действии озона на активные металлы в особых условиях образуются озониды состава K + O 3 – . Озон получают в промышленности для специальных целей, он является хорошим дезинфицирующим средством и используется для очистки воды и как отбеливатель, улучшает состояние атмосферы в закрытых системах, дезинфицирует предметы и пищу, ускоряет созревание зерна и фруктов. В химической лаборатории часто используют озонатор для получения озона, необходимого для некоторых методов химического анализа и синтеза. Каучук легко разрушается даже под действием малых концентраций озона. В некоторых промышленных городах значительная концентрация озона в воздухе приводит к быстрой порче резиновых изделий, если они не защищены антиоксидантами. Озон очень токсичен. Постоянное вдыхание воздуха даже с очень низкими концентрациями озона вызывает головную боль, тошноту и другие неприятные состояния.

ОПРЕДЕЛЕНИЕ

Кислород - восьмой по счету элемент Периодической таблицы. Относится к неметаллам. Расположен во втором периоде VI группы A подгруппы.

Порядковый номер равен 8. Заряд ядра равен +8. Атомный вес - 15,999а.е.м. В природе встречаются три изотопа кислорода: 16 O, 17 O и 18 O, из которых наиболее распространенным является 16 O (99,762 %).

Электронное строение атома кислорода

Атом кислорода имеет две оболочки, как и все элементы, расположенные во втором периоде. Номер группы -VI (халькогены) - свидетельствует о том, что на внешнем электронном уровне атома азота находится 6 валентных электронов. Обладает высокой окислительной способностью (выше только у фтора).

Рис. 1. Схематичное изображение строения атома кислорода.

Электронная конфигурация основного состояния записывается следующим образом:

1s 2 2s 2 2p 4 .

Кислород - элемент p-семейства. Энергетическая диаграмма для валентных электронов в невозбужденном состоянии выглядит следующим образом:

У кислорода есть 2 пары спаренных электронов и два неспаренных электрона. Во всех своих соединениях кислород проявляет валентность II.

Рис. 2. Пространственное изображение строения атома кислорода.

Примеры решения задач

ПРИМЕР 1

КИСЛОРОД (латинский Oxygenium), О, химический элемент VI группы короткой формы (16-й группы длинной формы) периодической системы, относится к халькогенам; атомный номер 8, атомная масса 15,9994. Природный кислород состоит из трёх изотопов: 16 О (99,757%), 17 О (0,038%) и 18 О (0,205%). Преобладание в смеси изотопов наиболее лёгкого 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов. Равное число протонов и нейтронов обусловливает высокую энергию их связи в ядре и наибольшую стабильность ядер 16 О по сравнению с остальными. Искусственно получены радиоизотопы с массовыми числами 12-26.

Историческая справка. Кислород получили в 1774 году независимо К. Шееле (путём прокаливания нитратов калия КNО 3 и натрия NaNO 3 , диоксида марганца MnO 2 и других веществ) и Дж. Пристли (при нагревании тетраоксида свинца Pb 3 О 4 и оксида ртути HgO). Позднее, когда было установлено, что кислород входит в состав кислот, А. Лавуазье предложил название oxygène (от греческого όχύς - кислый и γεννάω - рождаю, отсюда и русское название «кислород»).

Распространённость в природе. Кислород - самый распространённый химический элемент на Земле: содержание химически связанного кислорода в гидросфере составляет 85,82% (главным образом в виде воды), в земной коре -49% по массе. Известно более 1400 минералов, в состав которых входит кислород. Среди них преобладают минералы, образованные солями кислородсодержащих кислот (важнейшие классы - карбонаты природные, силикаты природные, сульфаты природные, фосфаты природные), и горные породы на их основе (например, известняк, мрамор), а также различные оксиды природные, гидроксиды природные и горные породы (например, базальт). Молекулярный кислород составляет 20,95% по объёму (23,10% по массе) земной атмосферы. Кислород атмосферы имеет биологическое происхождение и образуется в зелёных растениях, содержащих хлорофилл, из воды и диоксида углерода при фотосинтезе. Количество кислорода, выделяемое растениями, компенсирует количество кислорода, расходуемое в процессах гниения, горения, дыхания.

Кислород - биогенный элемент - входит в состав важнейших классов природных органических соединений (белков, жиров, нуклеиновых кислот, углеводов и др.) и в состав неорганических соединений скелета.

Свойства . Строение внешней электронной оболочки атома кислорода 2s 2 2р 4 ; в соединениях проявляет степени окисления -2, -1, редко +1, +2; электроотрицательность по Полингу 3,44 (наиболее электроотрицательный элемент после фтора); атомный радиус 60 пм; радиус иона О 2 -121 пм (координационное число 2). В газообразном, жидком и твёрдом состояниях кислород существует в виде двухатомных молекул О 2 . Молекулы О 2 парамагнитны. Существует также аллотропная модификация кислорода - озон, состоящая из трёхатомных молекул О 3 .

В основном состоянии атом кислорода имеет чётное число валентных электронов, два из которых не спарены. Поэтому кислород, не имеющий низкой по энергии вакантной d-opбитали, в большинстве химических соединений двухвалентен. В зависимости от характера химической связи и типа кристаллической структуры соединения координационное число кислорода может быть разным: О (атомарный кислород), 1 (например, О 2 , СО 2), 2 (например, Н 2 О, Н 2 О 2), 3 (например, Н 3 О +), 4 (например, оксоацетаты Be и Zn), 6 (например, MgO, CdO), 8 (например, Na 2 О, Cs 2 О). За счёт небольшого радиуса атома кислород способен образовывать прочные π-связи с другими атомами, например с атомами кислорода (О 2 , О 3), углерода, азота, серы, фосфора. Поэтому для кислорода одна двойная связь (494 кДж/моль) энергетически более выгодна, чем две простые (146 кДж/моль).

Парамагнетизм молекул О 2 объясняется наличием двух неспаренных электронов с параллельными спинами на дважды вырожденных разрыхляющих π*-орбиталях. Поскольку на связывающих орбиталях молекулы находится на четыре электрона больше, чем на разрыхляющих, порядок связи в О 2 равен 2, т. е. связь между атомами кислорода двойная. Если при фотохимическом или химическом воздействии на одной π*-орбитали оказываются два электрона с противоположными спинами, возникает первое возбуждённое состояние, по энергии расположенное на 92 кДж/моль выше основного. Если при возбуждении атома кислорода два электрона занимают две разные π*-орбитали и имеют противоположные спины, возникает второе возбуждённое состояние, энергия которого на 155 кДж/моль больше, чем основного. Возбуждение сопровождается увеличением межатомных расстояний О-О: от 120,74 пм в основном состоянии до 121,55 пм для первого и до 122,77 пм для второго возбуждённого состояния, что, в свою очередь, приводит к ослаблению связи О-О и к усилению химической активности кислорода. Оба возбуждённых состояния молекулы О 2 играют важную роль в реакциях окисления в газовой фазе.

Кислород - газ без цвета, запаха и вкуса; t пл -218,3 °С, t кип -182,9 °С, плотность газообразного кислорода 1428,97 кг/дм 3 (при 0 °С и нормальном давлении). Жидкий кислород - бледно-голубая жидкость, твёрдый кислород - синее кристаллическое вещество. При 0 °С теплопроводность 24,65-10 -3 Вт/(мК), молярная теплоёмкость при постоянном давлении 29,27 Дж/(моль·К), диэлектрическая проницаемость газообразного кислорода 1,000547, жидкого 1,491. Кислород плохо растворим в воде (3,1% кислорода по объёму при 20°С), хорошо растворим в некоторых фторорганических растворителях, например перфтордекалине (4500% кислорода по объёму при 0 °С). Значительное количество кислорода растворяют благородные металлы: серебро, золото и платина. Растворимость газа в расплавленном серебре (2200% по объёму при 962 °С) резко понижается с уменьшением температуры, поэтому при охлаждении на воздухе расплав серебра «закипает» и разбрызгивается вследствие интенсивного выделения растворённого кислорода.

Кислород обладает высокой реакционной способностью, сильный окислитель: взаимодействует с большинством простых веществ при нормальных условиях, в основном с образованием соответствующих оксидов (многие реакции, протекающие медленно при комнатной и более низких температурах, при нагревании сопровождаются взрывом и выделением большого количества теплоты). Кислород взаимодействует при нормальных условиях с водородом (образуется вода Н 2 О; смеси кислорода с водородом взрывоопасны - смотри Гремучий газ), при нагревании - с серой (серы диоксид SO 2 и серы триоксид SO 3), углеродом (углерода оксид СО, углерода диоксид СО 2), фосфором (фосфора оксиды), многими металлами (оксиды металлов), особенно легко со щелочными и щёлочноземельными (в основном пероксиды и надпероксиды металлов, например пероксид бария ВаО 2 , надпероксид калия КО 2). С азотом кислород взаимодействует при температуре выше 1200 °С или при воздействии электрического разряда (образуется монооксид азота NO). Соединения кислорода с ксеноном, криптоном, галогенами, золотом и платиной получают косвенным путём. Кислород не образует химических соединений с гелием, неоном и аргоном. Жидкий кислород также является сильным окислителем: пропитанная им вата при поджигании мгновенно сгорает, некоторые летучие органические вещества способны самовоспламеняться, когда находятся на расстоянии нескольких метров от открытого сосуда с жидким кислородом.

Кислород образует три ионные формы, каждая из которых определяет свойства отдельного класса химических соединений: О 2 - супероксидов (формальная степень окисления атома кислорода -0,5), О 2 - - пероксидных соединений (степень окисления атома кислорода -1, например водорода пероксид Н 2 О 2), О 2- - оксидов (степень окисления атома кислорода -2). Положительные степени окисления +1 и +2 кислород проявляет во фторидах О 2 F 2 и OF 2 соответственно. Фториды кислорода неустойчивы, являются сильными окислителями и фторирующими реагентами.

Молекулярный кислород является слабым лигандом и присоединяется к некоторым комплексам Fe, Со, Mn, Cu. Среди таких комплексов наиболее важен железопорфирин, входящий в состав гемоглобина - белка, который осуществляет перенос кислорода в организме теплокровных.

Биологическая роль . Кислород как в свободном виде, так и в составе различных веществ (например, ферментов оксидаз и оксидоредуктаз) принимает участие во всех окислительных процессах, протекающих в живых организмах. В результате выделяется большое количество энергии, расходуемой в процессе жизнедеятельности.

Получение . В промышленных масштабах кислород производят путём сжижения и фракционной перегонки воздуха (смотри в статье Воздуха разделение), а также электролизом воды. В лабораторных условиях кислород получают разложением при нагревании пероксида водорода (2Р 2 О 2 = 2Н 2 О + О 2), оксидов металлов (например, оксида ртути: 2HgO = 2Hg + О 2), солей кислородсодержащих кислот-окислителей (например, хлората калия: 2КlO 3 = 2KCl + 3О 2 , перманганата калия: 2KMnO 4 = К 2 MnO 4 + MnO 2 + О 2), электролизом водного раствора NaOH. Газообразный кислород хранят и транспортируют в стальных баллонах, окрашенных в голубой цвет, при давлении 15 и 42 МПа, жидкий кислород - в металлических сосудах Дьюара или в специальных цистернах-танках.

Применение . Технический кислород используют как окислитель в металлургии (смотри, например, Кислородно-конвертерный процесс), при газопламенной обработке металлов (смотри, например, Кислородная резка), в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и др. Чистый кислород используют в кислородно-дыхательных аппаратах на космических кораблях, подводных лодках, при подъёме на большие высоты, проведении подводных работ, в лечебных целях в медицине (смотри в статье Оксигенотерапия). Жидкий кислород применяют как окислитель ракетных топлив, при взрывных работах. Водные эмульсии растворов газообразного кислорода в некоторых фторорганических растворителях предложено использовать в качестве искусственных кровезаменителей (например, перфторан).

Лит.: Saunders N. Oxygen and the elements of group 16. Oxf., 2003; Дроздов А. А., Зломанов В. П., Мазо Г. Н., Спиридонов Ф. М. Неорганическая химия. М., 2004. Т. 2; Шрайвер Д., Эткинс П. Неорганическая химия. М., 2004. Т. 1-2.

Кислород О имеет атомный номер 8, расположен в главной подгруппе (подгруппе а) VI группе, во втором периоде. В атомах кислорода валентные электроны размещаются на 2-м энергетическом уровне, имеющем только s — и p -орбитали. Это исключает возможность перехода атомов О в возбуждённое состояние, поэтому кислород во всех соединениях проявляет постоянную валентность, равную II. Имея высокую электроотрицательность, атомы кислорода всегда в соединениях заряжены отрицательно (с.о. = -2 или -1). Исключение – фториды OF 2 и O 2 F 2 .

Для кислорода известны степени окисления -2, -1, +1, +2

Общая характеристика элемента

Кислород – самый распространенный элемент на Земле, на его долю приходится чуть меньше половины, 49 % от общей массы земной коры. Природный кислород состоит из 3 стабильных изотопов 16 О, 17 О и 18 О (преобладает 16 О). Кислород входит в состав атмосферы (20,9 % по объему, 23,2 по массе), в состав воды и более 1400 минералов: кремнезема, силикатов и алюмосиликатов, мраморов, базальтов, гематита и других минералов и горных пород. Кислород составляет 50-85% массы тканей растений и животных, т.к содержится в белках, жирах и углеводах, из которых состоят живые организмы. Общеизвестна роль кислорода для дыхания, для процессов окисления.

Кислород сравнительно мало растворим в воде – 5 объемов в 100 объемах воды. Однако, если бы весь растворенный в воде кислород перешел в атмосферу, то он занял бы огромный объем – 10 млн км 3 (н.у). Это равно примерно 1% всего кислорода в атмосфере. Образование на земле кислородной атмосферы обусловлено процессами фотосинтеза.

Открыт шведом К. Шееле (1771 – 1772 г.г) и англичанином Дж. Пристли (1774г.). Первый использовал нагревание селитры, второй – оксида ртути (+2). Название дал А.Лавуазье («оксигениум» - «рождающий кислоты»).

В свободном виде существует в двух аллотропных модификациях – «обыкновенного» кислорода О 2 и озона О 3 .

Строение молекулы озона

3О 2 = 2О 3 – 285 кДж
Озон в стратосфере образует тонкий слой, который поглощает большую часть биологически вредного ультрафиолетового излучения.
При хранении озон самопроизвольно превращается в кислород. Химически кислород О 2 менее активен, чем озон. Электроотрицательность кислорода 3,5.

Физические свойства кислорода

O 2 – газ без цвета, запаха и вкуса, т.пл. –218,7 °С, т.кип. –182,96 °С, парамагнитен.

Жидкий O 2 голубого, твердый – синего цвета. O 2 растворим в воде (лучше, чем азот и водород).

Получение кислорода

1. Промышленный способ — перегонка жидкого воздуха и электролиз воды:

2Н 2 О → 2Н 2 + О 2

2. В лаборатории кислород получают:
1.Электролизом щелочных водных растворов или водных растворов кислородосодержащих солей (Na 2 SO 4 и др.)

2. Термическим разложением перманганата калия KMnO 4:
2KMnO 4 = K 2 MnO4 + MnO 2 + O 2 ,

Бертолетовой соли KClO 3:
2KClO 3 = 2KCl + 3O 2 (катализатор MnO 2)

Оксида марганца (+4) MnO 2:
4MnO 2 = 2Mn 2 O 3 + O 2 (700 o C),

3MnO 2 = 2Mn 3 O 4 + O 2 (1000 o C),

Пероксид бария BaO 2:
2BaO 2 = 2BaO + O 2

3. Разложением пероксида водорода:
2H 2 O 2 = H 2 O + O 2 (катализатор MnO 2)

4. Разложение нитратов:
2KNO 3 → 2KNO 2 + O 2

На космических кораблях и подводных лодках кислород получают из смеси K 2 O 2 и K 2 O 4:
2K 2 O 4 + 2H 2 O = 4KOH +3O 2
4KOH + 2CO 2 = 2K 2 CO 3 + 2H 2 O

Суммарно:
2K 2 O 4 + 2CO 2 = 2K 2 CO 3 + 3О 2

Когда используют K 2 O 2 , то суммарная реакция выглядит так:
2K 2 O 2 + 2CO 2 = 2K 2 CO 3 + O 2

Если смешать K 2 O 2 и K 2 O 4 в равномолярных (т.е. эквимолярных) количествах, то на 1 моль поглощенного СО 2 выделится один моль О 2.

Химические свойства кислорода

Кислород поддерживает горение. Горение — б ыстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света. Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.

Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода 2s 2 2p 4 находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.

Кислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет отрицательную степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.

Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.

Кислород легко реагирует с щелочными и щелочноземельными металлами:

4Li + O 2 → 2Li 2 O,

2K + O 2 → K 2 O 2 ,

2Ca + O 2 → 2CaO,

2Na + O 2 → Na 2 O 2 ,

2K + 2O 2 → K 2 O 4

Мелкий порошок железа (так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe 2 O 3 , а стальная проволока горит в кислороде, если ее заранее раскалить:

3 Fe + 2O 2 → Fe 3 O 4

2Mg + O 2 → 2MgO

2Cu + O 2 → 2CuO

С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:

S + O 2 → SO 2 ,

C + O 2 → CO 2 ,

2H 2 + O 2 → H 2 O,

4P + 5O 2 → 2P 2 O 5 ,

Si + O 2 → SiO 2 , и т.д

Почти все реакции с участием кислорода O 2 экзотермичны, за редким исключением, например:

N 2 + O 2 2NO – Q

Эта реакция протекает при температуре выше 1200 o C или в электрическом разряде.

Кислород способен окислить сложные вещества, например:

2H 2 S + 3O 2 → 2SO 2 + 2H 2 O (избыток кислорода),

2H 2 S + O 2 → 2S + 2H 2 O (недостаток кислорода),

4NH 3 + 3O 2 → 2N 2 + 6H 2 O (без катализатора),

4NH 3 + 5O 2 → 4NO + 6H 2 O (в присутствии катализатора Pt),

CH 4 (метан) + 2O 2 → CO 2 + 2H 2 O,

4FeS 2 (пирит) + 11O 2 → 2Fe 2 O 3 + 8SO 2 .

Известны соединения, содержащие катион диоксигенила O 2 + , например, O 2 + — (успешный синтез этого соединения побудил Н. Бартлетта попытаться получить соединения инертных газов).

Озон

Озон химически более активен, чем кислород O 2 . Так, озон окисляет иодид - ионы I — в растворе Kl:

O 3 + 2Kl + H 2 O = I 2 + O 2 + 2KOH

Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.

Применение кислорода O 2: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.

Применение озона О 3: для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.

Элементы, расположенные в главной подгруппе VI группы периодической системы элементов Д. И. Менделеева.

Распределение электронов по энергетическим уравнениям атомов элементов группы кислородаТаблица 13

Элемент

Заряд ядра

Энергетические уровни

Радиус атома Å

K

L

M

N

O

0,60

1,04

1,16

1,43

Рассмотрение атомных структур элементов главной подгруппы VI группы показывает, что все они имеют шестиэлектронную структуру внешнего слоя (табл. 13) и в связи с этим обладают сравнительно высокими значениями электроотрицательности. Наибольшей электроотрицательностью обладает , наименьшей - , что объясняется изменением величины атомного радиуса. Особое место кислорода в этой группе подчеркивается тем, что , и теллур могут непосредственно соединяться с кислородом, но не могут соединяться между собой.

Элементы группы кислорода также принадлежат к числу р -элементов, так как у них достраивается р -оболочка. Для всех элементов семейства, кроме самого кислорода, валентными являются 6 электронов внешнего слоя.
В окислительно-восстановительных реакциях элементы группы кислорода часто проявляют окислительные свойства. Наиболее сильно окислительные свойства выражены у кислорода.
Для всех элементов главной подгруппы VI группы характерна отрицательная степень окисления -2. Однако для серы, селена и теллура наряду с этим возможны и положительные степени окисления (максимальная +6).
Молекула кислорода, как всякого простого газа, двухатомна, построена по типу ковалентной связи, образованной посредством двух электронных пар. Следовательно, кислород двухвалентен при образовании простого .
Сера - твердое вещество. В состав молекулы входит 8 атомов серы (S8), но они соединены в своеобразное кольцо, в котором каждый атом серы соединен лишь с двумя соседними атомами ковалентной связью

Таким образом, каждый атом серы, имея с двумя соседними атомами по одной общей электронной паре, сам по себе является двухвалентным. Сходные молекулы образуют селен (Se8) и теллур (Te8).

1. Составьте рассказ о группе кислорода по следующему плану: а) положение в периодической системе; б) заряды ядер и. число нейтронов в ядре; в) электронные конфигурации; г) структура кристаллической решетки; д) возможные степени окисления кислорода и всех остальных элементов этой группы.
2. В чем сходство и различие атомных структур и электронных конфигураций атомов элементов главных подгрупп VI и VII групп?
3. Сколько валентных электронов имеется у элементов главной подгруппы VI группы?
4. Как должны себя вести элементы главной подгруппы VI группы в окислительно-восстановительных реакциях?
5. Какой из элементов главной подгруппы VI группы является наиболее электроотрицательным?

При рассмотрении элементов главной подгруппы VI группы мы впервые встречаемся с явлением аллотропии. Один и тот же элемент в свободном состоянии может образовывать два или несколько простых веществ. Такое явление называется аллотропией, а сами называются аллотропными видоизменениями.

Запишите эту формулировку в тетрадь.

Например, элемент кислород способен образовывать два простых - кислород и озон.
Формула простого кислорода O2, формула простого вещества озона O3. Построены их молекулы по разному:


Кислород и озон - аллотропные видоизменения элемента кислорода.
Сера также может образовывать несколько аллотропных видоизменений (модификаций). Известна ромбическая (октаэдрическая), пластическая и моноклиническая сера. Селен и теллур также образуют несколько аллотропных видоизменений. Следует заметить, что явление аллотропии характерно для многих элементов. Различия в свойствах разных аллотропных видоизменений мы рассмотрим при изучении элементов.

6. В чем отличие структуры молекулы кислорода от структуры молекулы озона?

7. Какого типа связь в молекулах кислорода и озона?

Кислород. Физические свойства, физиологическое действие, значение кислорода в природе

Кислород - наиболее легкий элемент главной подгруппы VI группы. Атомный вес кислорода 15,994. 31,988. Атом кислорода имеет самый малый радиус из элементов этой подгруппы (0,6 Å). Электронная конфигурация атома кислорода: ls 2 2s 2 2p 4 .

Распределение электронов по орбиталям второго слоя указывает на , что кислород имеет на р-орбиталях два непарных электрона, которые могут быть легко использованы на образование химической связи между атомами. Характерная степень окисления кислорода.
Кислород представляет собой газ, не имеющий цвета и запаха. Он тяжелее воздуха, при температуре -183° превращается в жидкость голубого цвета, а при температуре -219° затвердевает.

Плотность кислорода равна 1,43 г/л. Кислород плохо растворим в воде: в 100 объемах воды при 0° растворяются 3 объема кислорода. Поэтому кислород можно держать в газометре (рис. 34) - приборе для хранения газов, нерастворимых и малорастворимых в воде. Чаще всего в газометре хранят кислород.
Газометр состоит из двух главных частей: сосуда 1, служащего для хранения газа, и большой воронки 2 с краном и с длинной трубкой, доходящей почти до дна сосуда 1 и служащей для подачи воды в прибор. Сосуд 1 имеет три тубуса: в тубус 3 с притертой внутренней поверхностью вставляют, воронку 2 с краном, в тубус 4 вставляют газоотводную трубку, снабженную краном; тубус 5 внизу служит для выпуска воды из прибора при его зарядке и разрядке. В заряженном газометре сосуд 1 заполнен кислородом. На дне сосуда находится , в которую опущен конец трубки воронки 2.

Рис. 34.
1 - сосуд для хранения газа; 2 - воронка для подачи воды; 3 - тубус с притертой поверхностью; 4 - тубус для выведения газа; 5 - тубус для выпуска воды при зарядке аппарата.

Если нужно получить из газометра кислород, сначала открывают кран воронки, и слегка сжимает кислород, находящийся в газометре. Затем открывают кран на газоотводной трубке, через который выходит кислород, вытесняемый водой.

В промышленности кислород хранят в стальных баллонах в сжатом состоянии (рис. 35, а), или в жидком виде в кислородных «танках» (рис. 36).

Рис. 35. Кислородный баллон

Выпишите из текста названия приборов, предназначенных для хранения кислорода.
Кислород является наиболее распространенным элементом. Он составляет почти 50% веса всей земной коры (рис. 37). Человеческий организм содержит 65% кислорода, входящего в состав различных органических веществ, из которых построены ткани и органы. В воде около 89% кислорода. В атмосфере на кислород приходится 23% по весу и 21% по объему. Кислород входит в состав самых разнообразных горных пород (например, известняка, мела, мрамора CaCO3, песка SiO2), руд различных металлов (магнитного железняка Fe3O4, бурого железняка 2Fe2O3 · nH2O, красного железняка Fe2O3, боксита Аl2O3 · nН2O и т. д.). Кислород входит в состав большинства органических веществ.

Физиологическое значение кислорода огромно. Это единственный газ, который живые организмы могут использовать для дыхания. Отсутствие кислорода вызывает остановку жизненных процессов и гибель организма. Без кислорода человек может прожить всего несколько минут. При дыхании поглощается кислород, который принимает участие в окислительно-восстановительных процессах, происходящих в организме, а выделяются продукты окисления органических веществ - , двуокись углерода и другие вещества. Как наземные, так и водные живые организмы дышат кислородом: наземные - свободным кислородом атмосферы, а водные - кислородом, растворенным в воде.
В природе происходит своеобразный круговорот кислорода. Кислород из атмосферы поглощается животными, растениями, человеком, расходуется на процессы горения топлива, гниение и прочие окислительные процессы. Двуокись углерода и вода, образующиеся в процессе окисления, потребляются зелеными растениями, в которых с помощью хлорофилла листьев и солнечной энергии осуществляется процесс фотосинтеза, т. е. синтеза органических веществ из двуокиси углерода и воды, сопровождающегося выделением кислорода.
Для обеспечения кислородом одного человека нужны кроны двух больших деревьев. Зеленые растения поддерживают постоянный состав атмосферы.

8. Каково значение кислорода в жизни живых организмов?
9. Как пополняется запас кислорода в атмосфере?

Химические свойства кислорода

Свободный кислород, вступая в реакции с простыми и сложными веществами, ведет себя обычно как .

Рис. 37.

Степень окисления, которую он приобретает при этом, всегда -2. В непосредственное взаимодействие с кислородом вступают многие элементы, за исключением благородных металлов, элементов с близкими к кислороду значениями электроотрицательности () и инертных элементов.
В результате соединения кислорода с простыми и сложными веществами образуются . Многие горят в кислороде, хотя на воздухе либо не горят, либо горят очень слабо. сгорает в кислороде ярко-желтым пламенем; при этом образуется перекись натрия (рис. 38):
2Na + O2 =Na2O2,
Сера горит в кислороде ярко-голубым пламенем с образованием сернистого ангидрида:
S + O2 = SO2
Древесный уголь на воздухе едва тлеет, а в кислороде сильно раскаляется и сгорает с образованием двуокиси углерода (рис. 39):
С + O2 = СO2

Рис. 36.

Горит в кислороде белым, ослепительно ярким пламенем, причем образуется твердая белая пятиокись фосфора:
4Р + 5O2 = 2Р2O5
горит в кислороде, разбрасывая искры и образуя железную окалину (рис. 40).
Горят в кислороде и органические вещества, например метан СН4, входящий состав природного газа: СH4 + 2O2 = CO2 + 2H2O
Горение в чистом кислороде происходит гораздо интенсивнее, чем на воздухе, и позволяет получить Значительно более высокие температурь. Это явление используют для интенсификации ряда химических процессов и более эффективного сжигания топлива.
В процессе дыхания кислород, соединяясь с гемоглобином крови, образует оксигемоглобин, который, являясь весьма нестойким соединением, легко разлагается в тканях с образованием свободного кислорода, идущего на окисление. Гниение, также являются окислительными процессами, протекающими с участием кислорода.
Распознают чистый кислород, внося в сосуд, где предполагается его наличие, тлеющую лучинку. Она ярко вспыхивает - это и является качественной пробой на кислород.

10. Каким образом, имея в своем распоряжении лучинку, можно распознать находящиеся в разных сосудах кислород, двуокись углерода? 11. Какой объем кислорода пойдет на сжигание 2 кг каменного угля, содержащего в сечем составе 70% углерода, 5% водорода, 7% , кислорода, остальное- негорючие компоненты?

Рис. 38. Горение натрия Рис. 39. Горение угля Рис. 40. Горение железа в кислороде.

12. Хватит ли 10 л кислорода для сжигания 5 г фосфора?
13. 1 м3 газовой смеси, содержащей 40% окиси углерода, 20% азота, 30% водорода н 10% двуокиси углерода сожгли в кислороде. Какой объем кислорода был израсходован?
14. Можно ли сушить кислород, пропуская его через: а) серную кислоту, б) хлорид кальция, в) фосфорный ангидрид, г) металлический ?
15. Как освободить двуокись углерода от примеси кислорода и наоборот, как освободить кислород от примеси двуокиси углерода?
16. 20 л кислорода, содержащего примесь двуокиси углерода пропустили через 200 мл 0,1 н. раствора бария. В результате катион Ва 2+ был полностью осажден. Сколько двуокиси углерода (в процентах) содержал исходный кислород?

Получение кислорода

Получают кислород несколькими способами. В лаборатории кислород получают из Кислородсодержащих веществ, которые могут легко его отщеплять, например из перманганата калия КМnO4 (рис. 41) или из бертолетовой соли КСlO3:
2КМnО4 = K2MnO4 + МnО2 + O2

2КСlO3 = 2КСl + O2
При получении кислорода из бертолетовой соли для ускорения реакции должен присутствовать катализатор - двуокись марганца. Катализатор ускоряет разложение и делает его более равномерным. Без катализатора может

Рис. 41. Прибор для получения кислорода лабораторный способом из перманганата калия. 1 - перманганат калия; 2 - кислород; 3 - вата; 4 - цилиндр - сборник.

произойти взрыв, если бертолетова соль взята в большом количестве и особенно если она загрязнена органическими веществами.
Из перекиси водорода кислород получают также в присутствии катализатора - двуокиси марганца МnО2 по уравнению:
2Н2O2[МnО2] = 2Н2O + О2

■ 17. Зачем при разложении бертолетовой соли добавляют МnО2?
18. Образующийся при разложении КМnO4 кислород можно собирать над водой. Отразите это в схеме прибора.
19. Иногда при отсутствии в лаборатории двуокиси марганца вместо нее в бертолетову соль добавляют немного остатка после прокаливания перманганата калия. Почему возможна такая замена?
20. Какой объем кислорода выделится при разложении 5 молей бертолетовой соли?

Кислород может быть получен также разложением Нитратов при нагревании выше температуры плавления:
2KNO3 = 2KNO2 + О2
В промышленности кислород получают в основном из жидкого воздуха. Переведенный в жидкое состояние воздух подвергают испарению. Сначала улетучивается (его температура кипения - 195,8°), а кислород остается (его температура кипения -183°). Этим способом кислород получается почти в чистом виде.
Иногда при наличии дешевой электроэнергии кислород получают электролизом воды:
Н2O ⇄ Н + + OН —
Н + + е — → Н 0
на катоде
2ОН — — е — → H2O + О; 2О = О2
на аноде

■ 21. Перечислите известные вам лабораторные и промышленные способы получения кислорода. Запищите их в тетрадь, сопровождая каждый способ уравнением реакции.
22. Являются ли реакции, используемые для получения кислорода, окислительно-восстановительными? Дайте обоснованный ответ.
23. Взято по 10 г следующих веществ; перманганата калия, бертолетовой соли, нитрата калия. В каком случае удастся получить наибольший объем кислорода?
24. В кислороде, полученном при нагревании 20 г перманганата калия, сожгли 1 г угля. Какой процент перманганата подвергся разложению?

Кислород - самый распространенный элемент в природе. Он широко применяется в медицине, химии, промышленности и т. д. (рис. 42).

Рис. 42. Применение кислорода.

Летчики на больших высотах, люди, работающие в атмосфере вредных газов, занятые на подземных и подводных работах, пользуются кислородными приборами (рис. 43).

В тех случаях, когда затруднено вследствие того или иного заболевания, человеку дают дышать чистым кислородом из кислородной подушки или помещают его в кислородную палатку.
В настоящее время для интенсификации металлургических процессов широко применяют воздух, обогащенный кислородом, или чистый кислород. Кислородно-водородная и кислородно-ацетиленовая горелки применяются для сварки и резки металлов. Пропитывая жидким кислородом горючие вещества: древесные опилки, угольный порошок и пр., получают взрывчатые смеси, называемые оксиликвитами.

■ 25. Начертите таблицу в тетради и заполните её.

Озон О3

Как уже говорилось, элемент кислород может образовывать еще одно аллотропное видоизменение - озон О3. Озон кипит при -111°, а затвердевает при -250°. В газообразном состоянии он голубого цвета, в жидком - синего. озона в воде гораздо выше, чем кислорода: в 100 объемах воды растворяется 45 объемов озона.

Озон отличается от кислорода тем, что его молекула состоит из трех, а не двух атомов. В связи с этим молекула кислорода намного более стойкая, чем молекула озона. Озон легко распадается по уравнению:
О3 = О2 + [O]

Выделение атомарного кислорода при распаде озона делает его гораздо более сильным окислителем, чем кислород. Озон имеет запах-свежести («озон» в переводе значит «пахучий»). В природе он образуется под действием тихого электрического разряда и в сосновых лесах. Больным с заболеванием легких рекомендуется больше бывать в сосновых лесах. Однако продолжительное пребывание в атмосфере, сильно обогащенной озоном, может оказать отравляющее действие на организм. Отравление сопровождается головокружением, тошнотой, кровотечением из носа. При хрони-ческих отравлениях могут возникнуть сердечные заболевания.
В лаборатории озон получают из кислорода в озонаторах (рис. 44). В стеклянную трубку 1, обмотанную сна- ружи проволокой 2, пропускают кислород. Внутри трубки проходит проволока 3. Обе эти проволоки: соединены с полюсами источника тока, создающего на указанных электродах высокое напряжение. Между электродами происходит тихий электрический разряд, благодаря чему из кислорода образуется озон.

Рис 44; Озонатор. 1 - стеклянный баллон; 2 - наружная обмотка; 3 -проволока внутри трубки; 4 - раствор йодида калия с крахмалом

3О2 = 2О3
Озон является очень сильным окислителем. Он значительно энергичнее, чем кислород, вступает в реакции и вообще намного активнее кислорода. Например, в отличие от кислорода он может вытеснить из йодистого водорода или йодистых солей:
2KI + О3 + Н2О = 2КОН + I2 + O2

Озона в атмосфере очень мало (около одной миллионной доли процента), но он играет существенную, роль в поглощении ультрафиолетовых солнечных лучей, по-этому они попадают на землю в меньшем количестве и не оказывают губительного действия на живые организмы.
Применяется озон в небольшом количестве главным образом для кондиционирования воздуха, а также в химии.

■ 26. Что такое аллотропные видоизменения?
27. Почему йодкрахмальная бумага синеет под действием озона? Дайте обоснованный ответ.
28. Почему молекула кислорода значительно устойчивее молекулы озона? Обоснуйте свой ответ с точки зрения внутримолекулярной структуры.