Определить величины реакций для балки с шарнирными опорами. Примеры решения задач по статике. Примеры решения задач

Балками будем называть прямолинейные стержни, работающие на изгиб. В сопротивлении материалов термин «балка» значительно шире, чем в обычном употреблении этого слова: с точки зрения расчета на прочность, жесткость и устойчивость балкой является не только строительная балка, но также и вал, болт, ось железно­дорожного вагона, зуб шестерни и т. д.

Вначале ограничимся построением эпюр для простейшего случая изгиба балок, при котором все заданные нагрузки лежат в одной плоскости, называемой силовой (на рис. 4, а - плоскость П), при­чем эта плоскость совпадает с одной из главных плоскостей балки. Такой слу­чай будем называть плоским изгибом .

На расчетной схеме балку принято заменять ее осью (рис. 4, б). При этом все нагрузки, естественно, должны

Рис 4 быть приведены к оси балки и силовая плос­кость будет совпадать с плоскостью чер­тежа.

Как правило, балки имеют опорные устройства - опоры. Для расчета же их схематизи­руют в виде трех основных типов опор:

а) шарнирно-подвижная опора (рис. 5, а), в которой может возникать только одна составляющая реакции - , направленная вдоль опорного стерженька;

б) шарнирно-неподвижная опора (рис. 5, б), в которой могут возникать две составляющие - вертикальная реакция
и гори­зонтальная реакция

в) защемление (иначе жесткое защемление или заделка), где могут быть три составляющие - вертикальная
и горизонтальная
реакции и опорный момент Ма (рис. 5, в).

Все реакции и моменты считаются приложенными в точке А - центре тяжести опорного сечения.

Балка, показанная на рис. 6, с, называется простой , или однопролетной , или двухопорной , а расстояние l между опорами - пролетом .

Консолью называется балка, защемленная одним концом и не имеющая других опор (рис. 4, б), или часть балки, свешивающаяся за опоры (часть ВС на рис. 6, б; части АС и BD на рис. 6, е). Бан­ки, имеющие свешивающиеся части, называют консольными (рис. 6, б, в).

Для плоской системы сил можно составить три уравнения статики для определения неизвестных реакций.

Поэтому балка будет статически определимой, если число неизвестных опор­ных реакций не превышает трех; в противном случае балка стати­чески неопределима. Очевидно, что балки, изображенные на рис. 4 и 6, статически определимы.

Балка, изображенная на рис. 7, а , называется неразрезной и яв­ляется статически неопределимой, поскольку имеет пять неизвестных опорных реакций: три в опоре А и по одной в опорах В и С.

Поставив в сечениях балки шарниры, например в точках D и Е (рис. 7, б), получим статически определимую шарнирную балку, ибо каждый такой промежуточный шарнир к трем основным уравнениям статики прибавляет одно дополнительное уравнение: сумма моментов относительно центра шарнира от всех сил, расположен­ных по одну сторону от него, равна нулю .

Построение эпюр для статически неопределимых балок требует умения вычислять деформации, а поэтому ограничимся пока исклю­чительно статически определимыми балками.

Способы определения опорных реакций изучают в курсе теоре­тической механики. Поэтому здесь остановимся только на некоторых практических вопросах. Для этого рассмотрим простую балку (рис. 6, а).

1. Опоры обычно обозначают буквами А и В. Три неизвестные реакции находят из следующих уравнений равновесия:

а) сумма проекций всех сил на ось балки равна нулю:
откуда находят

б) сумма моментов всех сил относительно опорного шарнира А равна нулю:
откуда находят
.

в) сумма моментов всех сил относительно опорного шарнира В равна нулю:

откуда находят
.

2. Для контроля можно использовать или условие равенства нулю суммы проекций на вертикаль:

или условие равенства нулю суммы моментов относительно какой-либо точки С, отличной от А и В, т. е.

У

Условием
пользоваться проще, но оно дает надежную про­верку только в тех случаях, когда к балке не приложены сосредо­точенные моменты.

3. Перед составлением уравнений равновесия нужно выбрать (вообще говоря, произвольно) направления реакций и изобразить их на рисунке. Если в результате вычислений какая-либо реакция получается отрицательной, нужно изменить на рисунке ее направ­ление на обратное и в дальнейшем считать эту реакцию положи­тельной,

5. Если на балку действует распре деленная нагрузка, то для определения реакций ее заменяют равнодействующей, которая равна площади эпюры нагрузки и приложена в центре тя­жести этой эпюры.

Пример 5. Вычислить опорные реакции для балки, показанной на рис. 8.

Прежде всего находим равнодействующие Р 1 и Р 2 нагрузок, распределенных на участках АС н СВ:

;
.

Сила Р 1 приложена в центре тяжести прямоугольника, а Р 2 - в центре тяжести треугольника. Находим реакции:

1. Какая система сил является системой сходящихся сил?

2. Сформулируйте условие равновесия системы сходящихся сил в аналитической и геометрической формах.

3. Сформулируйте правила построения силового многоугольника.

4. Приведите формулу для определения равнодействующей системы сходящихся сил.

5. В каком случае проекция силы равна 0?

6. В каком случае проекция силы положительна?

Практическая работа

Тема: Определение реакций опор для балочных систем

Цель работы: Закрепить теоретические знания и умения определять реакции в опорах балочных систем

Образовательные результаты, соответствующие ФГОС:

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество

ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

ПК 3.1. Конструировать элементы систем водоснабжения и водоотведения, отопления, вентиляции и кондиционирования воздуха.

ПК 3.2. Выполнять основы расчета систем водоснабжения и водоотведения, отопления, вентиляции и кондиционирования воздуха.

Обучающийся должен знать основные понятия и законы механики твердого тела.

Форма работы - индивидуальная.

Характер работы - частично-поисковый.

Краткие теоретические и справочно-информационные материалы по теме:

Очень часто в машинах и конструкциях встречаются тела удлиненной формы, называемые балками (или балочными системами). Балки в основном предназначены для восприятия поперечных нагрузок. Балки имеют специальные опорные устройства для сопряжения их с другими элементами и передачи на них усилий.


Неизвестные числовые значения реакций опорных устройств балки определяются через систему уравнений равновесия.

Уравнения равновесия произвольной плоской системы сил могут быть представлены в трех формах. Первая (основная форма этих уравнений):

https://pandia.ru/text/80/184/images/image022_18.jpg" width="316" height="43 src=">

Это вторая форма уравнений равновесия.

Третья форма уравнений равновесия представляет собой равенство нулю сумм моментов относительно двух произвольных точек А и В и равенство нулю суммы проекций на некоторую ось х:

https://pandia.ru/text/80/184/images/image024_12.jpg" width="185" height="26 src=">

Вторая и третья формы уравнений равновесия для плоской системы параллельных сил примут одинаковый вид:

https://pandia.ru/text/80/184/images/image026_16.gif" width="58" height="23">или Учебные пособия" href="/text/category/uchebnie_posobiya/" rel="bookmark">учебное пособие / . - 2-е изд. - М.: ФОРУМ: ИНФРА-М, 2012.

Проверка знаний и умений (необходимых для выполнения практической работы)

Задание 1.

Задание 2.

1. Заменить распределенную нагрузку ее равнодействующей и указать точку ее приложения.

2. Освободить балку от связей, заменив их реакциями.

3. Выбрать систему уравнений равновесия.

4. Решить уравнения равновесия.

5. Выполнить проверку решения.

Примеры расчета :

Задание 1. Определить величины реакций в заделке. Провести проверку правильности решения.

https://pandia.ru/text/80/184/images/image032_11.gif" width="247 height=19" height="19">

2. Освобождаем балку АВ от связей, отбрасываем заделку в точке А и заменяем действие заделки возможными реакциями, возникающими в опоре – реактивным моментом МА и составляющими реакциями и . Получили плоскую систему параллельно расположенных сил, значит .

3. Выбираем систему уравнений равновесия:


4. Решение начинаем с крайней левой точки.

https://pandia.ru/text/80/184/images/image038_12.gif" width="205" height="25 src=">

В уравнении учитываем все моменты, которые создаются действующими силами находящимися на расстоянии относительно точки А.(Реакции, находящиеся в точке А, в уравнении не учитываются, так как они не создают плеча с точкой).

https://pandia.ru/text/80/184/images/image041_11.gif" width="516" height="45">

Решение выполнено, верно.

Задание 2. Определить величины реакций в шарнирных опорах балки. Провести проверку правильности решения.

Решение

2 . В заделке может возникнуть реакция, представляемая двум: составляющими (R Ay ,R Ax ), и реактивный момент М A . Наносим на схему балки возможные направления реакций.

Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.

В силу малой высоты считают , что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.

3. Используем систему уравнений:

Знаки полученных реакций (+), следовательно, направления ре-акций выбраны верно.

3 . Для проверки правильности решения составляем уравнение моментов относительно точки В.

Подставляем значения полученных реакций:

Решение выполнено верно.

Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F, распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.

На опорах балок возникают реакции, с определения которых следует начинать решения всех задач по расчету изгиба.

Реакции опор определяются из уравнений равновесия (статики), которые можно представить в двух различных вариантах:

1) в виде суммы проекций всех сил на оси х и у , а также суммы моментов сил (включая реакции) относительно любой точки по оси балки:

2) в виде суммы всех сил на одну из координатных осей х или у и двух сумм моментов сил (включая реакции) относительно двух точек, лежащих на оси балки:

Выбор того или оного варианта составления уравнений равновесия, а также выбор точек по направлению координатных осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не производить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их величины рекомендуется подставлять в какое-либо уравнение равновесия, не использованное ранее.

При определении реакций их направления можно выбирать произвольно. Если же реакции в расчете оказались отрицательными, то это означает, что их направление выбрано неправильно. В этом случае на расчетной схеме первоначальное направление реакций перечеркивают и указывают их обратное направление. В последующих расчетах величины реакций считаются положительными.

Однако можно заранее предугадать правильное направление реакций на основании мысленно представленной упругой линии балки после ее нагружения внешними усилиями (рис 8.5): при «отрыве» балки от опоры (опора А ) реакция R А имеет направление к опоре; при «вдавливании» балки в опору (опора В ) реакция R В имеет направление от опоры.

Рисунок 8.5 – К определению направлению реакций

Рассмотрим типичные случаи определения реакций для простейших видов нагрузок.

Если на балку действует интенсивностью q , как показано на рис.8.6, то при определении опорных реакций нагрузка заменяется ее равнодействующей Р , равной произведению интенсивности нагрузки q на длину участка ее действия l

Примером сплошной равномерно распределенной нагрузки может служить собственный вес балки или часто расположенные нагрузки на участке ее длины.

Рисунок 8.6 – Случай равномерно распределенной нагрузки на балку

Точка приложения сплошной равномерно распределенной нагрузки q лежит посредине того участка, на который она действует; при треугольном законе действия распределенной нагрузки равнодействующая прикладывается по ее центру тяжести.

Размерность интенсивности нагрузки q выражается обычно в кН/м или кН/см.

Рассмотрим последовательность определения опорных реакций для случая нагрузки балки, показанной на рис.8.7:

1. На расчетной схеме балки показывается принятое направление реакций R А и R В , возникающих на опорах. Поскольку внешняя нагрузка действует в вертикальной плоскости перпендикулярно оси балки, то горизонтальная реакция на шарнирно-неподвижной опоре А отсутствует.

2. Поскольку в данном случае неизвестных реакций две (R А и R В ), то в качестве равновесия для определения реакций принимается два уравнения

При составлении этих условий равновесия следует принять правило знаков для моментов сил, включая реакции. Обычно принимается такое привило для внешних (активных) знаков: если моменты от сил направлены по часовой стрелке, то они считаются положительными.

Тогда первое условие равновесия (8.4) приводит к уравнению относительно неизвестной реакции R В (см. рис.8.6)

Реакция получалась положительной, следовательно ее направление принято правильным.

Аналогично используем второе условие равновесия (8.4), приводящее к уравнению относительно второй реакции R А :

Снова реакция оказалась положительной, следовательно ее первоначально направление на расчетной схеме выбрано правильно.

3. Правильность определения величин реакций проверяем из использования еще одного, ранее не использованного, условия равновесия

При этом проекции сил, совпадающих с направлением оси у , считаются положительными, а направленных в обратную сторону – отрицательными.

Тогда на основании использования условия (8.5) имеем:

Полученное тождество (0=0) свидетельствует о правильности определения величин реакций в расчете изгиба балки.

Рассмотрим другой типичный случай нагрузки в виде внецентренно расположенной сосредоточенной силы Р по длине балки l (рис.8.7).

Рисунок 8.7 – Случай нагрузки балки сосредоточенной силой

1. Покажем на расчетной схеме реакции R А и R В . Они направлены, как было указано выше, навстречу нагрузке.

2. Реакции определим из условий равновесия:

Реакции получились положительными, следовательно, их первоначальное направление на расчетной схеме выбрано верно.

Заметим заодно, что реакция на опоре В оказалась больше, чем реакция на опоре А : R В ˃R А . Это следует из того, что сила Р находится ближе к опоре В , а значит и нагружает ее больше.

3. Проверка:

Полученное тождество свидетельствует о правильности определения реакции.

Рассмотрим еще один случай нагрузки балки в пролете внешним сосредоточенным моментом (рис. 8.8), что имеет место в практических расчетах изгиба.

𝔐


Рисунок 8.8 – Случай нагружения балки сосредоточенным моментом

1. Покажем на расчетной схеме предполагаемое направление реакций (вначале мы не знаем, правильно ли приняты такие направления).

2. Реакции определяем из уравнений равновесия:

Реакция получилась положительной, следовательно, ее первоначальное положение выбрано верно.

Реакция оказалась отрицательной, а это означает, что ее направление выбрано неправильно. Поэтому на расчетной схеме зачеркиваем первоначально (ошибочно) принятое направление R А и показываем обратное (истинное) направление (см.ри.8.8). В дальнейших расчетах считаем реакцию R А с правильным направлением положительной.

3. Проверка:

Использованное уравнение равновесия для балки выполняется, а это означает правильность определения реакций и их направления.

Если балка при поперечном изгибе имеет такие опоры, что общее число реакций, возникающих на опорах, не превышают двух, то реакции всегда могут быть определены из двух уравнений равновесия типа (8.2). Такие балки, реакции которых определяются из этих уравнений статики, называются статически определимыми балками. Эти балки могут быть таких простейших видов (рис. 8.9):

Рисунок 8.9 – Статически определимые балки

1) балка с одним жестко защемленным и другим свободным концом, иначе консоль (рис.8.9, а ); 2) шарнирно-опертые балки (рис.8.9, б и 8.9, в ).

Балки, у которых общее число реакций опор больше числа уравнений равновесия, называются статически неопределимыми (расчет их изгиба будет рассмотрен в п. 8.10). Для таких балок реакции опор определяются из совместного решения уравнений статики и условий совместимости деформаций.

Рассмотрен порядок решения задач на определение реакций опор балок. Приводится пример решения задачи и проверка правильности определения реакций. Приводится решение задачи вторым способом.

Содержание

Порядок решения задач на определение реакций опор балок

  • Выбираем систему координат. Можно ось x направить вдоль балки, ось y - вертикально вверх. Ось z будет направлена перпендикулярно плоскости рисунка, на нас. Центр системы координат можно выбрать в одной из точек опор балки.
  • Если есть распределенная нагрузка, то заменяем ее равнодействующей силой. Величина этой силы равна площади эпюры. Точка приложения силы находится в центре тяжести эпюры. Так если нагрузка q равномерно распределена на отрезке AB , то ее равнодействующая имеет величину Q = q·| AB| и приложена посередине отрезка AB .
  • Составляем уравнения равновесия для действующих сил. В общем случае они имеют вид:
    .
    Спроектируем это векторное уравнение на оси координат. Тогда сумма проекций сил на каждую из осей координат равна нулю:
    (1) .
    Находим проекции сил на оси координат и составляем уравнения (1). Для плоской системы сил, последнее уравнение, с проекциями на ось z , не используется.
  • Составляем уравнения равновесия для моментов сил. Сумма моментов сил относительно произвольной оси A′A′′ равна нулю:
    (2) .
    Чтобы составить это уравнение, мы должны выбрать ось, относительно которой вычисляются моменты. Ось лучше выбрать так, чтобы сделать вычисления более простыми. Чаще всего оси выбирают так, чтобы они проходили через точки опор балки, перпендикулярно плоскости рисунка.
  • Решаем уравнения и получаем значения реакций опор.
  • Делаем проверку результата. В качестве проверки можно выбрать какую-нибудь ось, перпендикулярную плоскости рисунка, и относительно нее подсчитать сумму моментов сил, действующих на балку, включая найденные реакции опор. Сумма моментов должна равняться нулю.

Пример решения задачи на определение реакций опор балки

Условие задачи.

Жесткая балка, линейные размеры которой указаны на рисунке 1, закреплена в точках А и В. На балку действуют пара сил с моментом М, равномерно распределенная нагрузка интенсивностью q и две силы P и G, место приложения которых показано на рисунке.
Определить реакции опор балки в точках A и В, вызываемые указанными нагрузками.

Дано:
P = 20,2 Н ; G = 22,6 Н ; q = 2 Н/м ; M = 42,8 Н·м ; a = 1,3 м ; b = 3,9 м ; α = 45° ;

Решение задачи

Проводим оси x и y системы координат. Начало системы координат поместим в точку A . Ось x направим горизонтально, вдоль балки. Ось y - вертикально. Ось z перпендикулярна плоскости рисунка и направлена на нас. На рисунке она не указана.

Силы, действующие на балку.

Отбрасываем опоры и заменяем их силами реакций.
В шарнире A , разложим силу реакции на составляющие и вдоль осей координат.
Реакция , в подвижной опоре на катках, направлена вертикально. Предполагаемые направления реакций опор выбираем по своему усмотрению, наугад. Если ошибемся с направлением реакции, то получим отрицательное значение, что будет говорить о том, что соответствующая сила реакции направлена в противоположную сторону.

Заменим равномерно распределенную нагрузку q равнодействующей . Абсолютное значение равнодействующей равно площади эпюры:
Н .
Точка приложения равнодействующей находится в центре тяжести эпюры. Поскольку эпюра представляет собой прямоугольник, то ее центр тяжести находится в точке C - посередине отрезка AD :
AC = CD = b/2 = 1,95 м .

Уравнения равновесия для сил

Определяем проекции сил на оси координат.

Разложим силу на составляющие вдоль координатных осей:
.
Абсолютные значения составляющих:
.
Вектор параллелен оси x и направлен в противоположную от нее сторону. Вектор параллелен оси y и также направлен в противоположную сторону. Поэтому проекции силы на оси координат имеют следующие значения:
.

Остальные силы параллельны осям координат. Поэтому они имеют следующие проекции:
;
;
;
;
.

Составляем уравнения равновесия для сил.
Сумма проекций всех сил на ось x равна нулю:
;
;
;
(П1) .

Сумма проекций всех сил на ось y равна нулю:
;
;
;
(П2) .

Уравнения равновесия для моментов

Итак, мы уже составили два уравнения для сил: (П1) и (П2). Но в них есть три неизвестные величины: , и . Чтобы их определить, нам нужно составить еще одно уравнение.

Составим уравнение равновесия для моментов сил. Для этого нам нужно выбрать ось, относительно которой мы будем вычислять моменты. В качестве такой оси возьмем ось, проходящую через точку A , перпендикулярно плоскости рисунка. За положительное направление выберем то, которое направлено на нас. Тогда, по правилу правого винта, положительным направлением закручивания будет направление против часовой стрелки.

Находим моменты сил относительно выбранной оси.
Силы , и пересекают ось. Поэтому их моменты равны нулю:
; ; .

Сила перпендикулярна плечу AB . Ее момент:
.
Поскольку, относительно оси A , сила направлена против часовой стрелки, то ее момент положительный.

Сила перпендикулярна плечу AK . Поскольку, относительно оси A , эта сила направлена по часовой стрелки, то ее момент имеет отрицательное значение:
.

Аналогичным способом находим моменты остальных сил:
;
.
Момент от пары сил M не зависит от точек приложения сил, входящих в пару:
.

Составляем уравнение равновесия. Сумма моментов сил относительно оси A равна нулю:
;

;
;
(П3) .

Решение уравнений равновесия

Итак, для трех неизвестных величин, мы получили три уравнения:
(П1) .
(П2) .
(П3) .

Решаем эти уравнения. Вычисляем расстояния.
м;
м;
м;
м.

Из уравнения (П1) находим:
Н.
Из уравнения (П3) находим:

Н.
Из уравнения (П2) имеем:
Н.
Абсолютное значение реакции опоры в точке A :
Н.

Проверка правильности решения

Чтобы проверить, правильно ли мы определили реакции опор балки, найдем сумму моментов сил относительно другой оси. Если мы нашли реакции правильно, то она должна равняться нулю.

Возьмем ось, проходящую через точку E . Вычисляем сумму моментов сил относительно этой оси:

.
Найдем погрешность вычисления суммы моментов. Найденные силы мы округлили до двух знаков после запятой. То есть погрешность определения реакций опор составляет 0,01 Н . Расстояния, по порядку величины, примерно равны 10 м. Тогда погрешность вычисления суммы моментов составляет около 10·0,01 = 0,1 Нм . Мы получили значение -0,03 Нм . Эта величина отличается от нуля не более, чем на величину погрешности. То есть, с учетом погрешности вычислений, сумма моментов относительно другой оси равна нулю. Значит решение правильное, силы реакций найдены верно.

Второй способ решения

Первым способом мы составили два уравнения для сил и одно - для моментов. Задачу можно решить другим способом, составив два уравнения для моментов и одно для сил.

Воспользуемся тем, что сумма моментов сил равна нулю относительно любой оси. Возьмем вторую ось, которая проходит через точку B перпендикулярно плоскости рисунка. Сумма моментов сил относительно этой равна нулю:
.
Вычисляем моменты сил относительно оси B .
; ; ;
;
;
;
;
.

Сумма моментов сил относительно оси B равна нулю:
;

;
;
(П4) ;

Итак, вторым способом, мы также имеем три уравнения:
(П1) .
(П3) ;
(П4) .

Здесь каждое уравнение содержит только одну неизвестную величину. Реакции и определяются из тех же уравнений, что и ранее. Находим силу из уравнения (П4):

Н.

Значение реакции совпало со значением, полученным первым способом из уравнения (П2).