Мономером рнк трнк ирнк является. Строение и уровни организации рнк. Что такое РНК

Различные виды ДНК и РНК – нуклеиновых кислот – это один из объектов изучения молекулярной биологии. Одним из наиболее многообещающих и быстро развивающихся направлений в этой науке в последние годы стало исследование РНК.

Кратко о строении РНК

Итак, РНК, рибонуклеиновая кислота, – это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу – полинуклеотид. Так образуется первичная структура РНК.

Вторичная структура – образование двойной цепочки – образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином - тройной водородной связи.

В рабочей форме молекула РНК образует также третичную структуру – особое пространственное строение, конформацию.

Синтез РНК

Все виды РНК синтезируются при помощи фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК, так и на РНК-матрице.

Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода и протекает в несколько этапов.

Сначала происходит узнавание и связывание РНК-полимеразы с особой последовательностью нуклеотидов на ДНК – промотором, после чего двойная спираль ДНК раскручивается на небольшом участке и начинается сборка молекулы РНК над одной из цепочек, называемой матричной (другая цепочка ДНК называется кодирующей – именно ее копией является синтезируемая РНК). Асимметричность промотора определяет, какая из цепочек ДНК будет служить матрицей, и тем самым позволяет РНК-полимеразе инициировать синтез в правильном направлении.

Следующий этап называется элонгацией. Транскрипционный комплекс, включающий РНК-полимеразу и расплетенный участок с гибридом ДНК-РНК, начинает движение. По мере этого перемещения наращиваемая цепочка РНК постепенно отделяется, а двойная спираль ДНК расплетается перед комплексом и восстанавливается за ним.


Завершающий этап синтеза наступает, когда РНК-полимераза достигает особого участка матрицы, называемого терминатором. Терминация (окончание) процесса может достигаться различными способами.

Основные виды РНК и их функции в клетке

Они следующие:

  • Матричная или информационная (мРНК). Посредством ее осуществляется транскрипция – перенос генетической информации с ДНК.
  • Рибосомная (рРНК), обеспечивающая процесс трансляции – синтез белка на матрице мРНК.
  • Транспортная (тРНК). Производит узнавание и транспортировку аминокислоты на рибосому, где происходит синтез белка, а также принимает участие в трансляции.
  • Малые РНК – обширный класс молекул небольшой длины, осуществляющих разнообразные функции в ходе процессов транскрипции, созревания РНК, трансляции.
  • РНК-геномы – кодирующие последовательности, которые содержат генетическую информацию у некоторых вирусов и вироидов.

В 1980-х годах была открыта каталитическая активность РНК. Молекулы, обладающие этим свойством, получили название рибозимов. Естественных рибозимов пока известно не так много, каталитическая способность их ниже, чем у белков, однако в клетке они выполняют исключительно важные функции. В настоящее время ведутся успешные работы по синтезу рибозимов, имеющие в том числе и прикладное значение.

Остановимся подробнее на различных видах молекул РНК.

Матричная (информационная) РНК

Эта молекула синтезируется над расплетенным участком ДНК, копируя таким образом ген, кодирующий тот или иной белок.

РНК эукариотических клеток, прежде чем стать, в свою очередь, матрицей для синтеза белка, должны созреть, то есть пройти через комплекс различных модификаций – процессинг.

Прежде всего, еще на стадии транскрипции, молекула подвергается кэпированию: к ее концу присоединяется особая структура из одного или нескольких модифицированных нуклеотидов – кэп. Он играет важную роль во многих последующих процессах и повышает стабильность мРНК. К другому концу первичного транскрипта присоединяется так называемый поли(А)хвост – последовательность адениновых нуклеотидов.

После этого пре-мРНК подвергается сплайсингу. Это удаление из молекулы некодирующих участков – интронов, которых много в ДНК эукариот. Далее происходит процедура редактирования мРНК, при которой химически модифицируется ее состав, а также метилирование, после чего зрелая мРНК покидает клеточное ядро.


Рибосомная РНК

Основу рибосомы – комплекса, обеспечивающего белковый синтез, составляют две длинные рРНК, которые образуют субчастицы рибосомы. Синтезируются они совместно в виде одной пре-рРНК, которая затем в ходе процессинга разделяется. В большую субчастицу входит также низкомолекулярная рРНК, синтезируемая с отдельного гена. Рибосомные РНК обладают плотно упакованной третичной структурой, которая служит каркасом для белков, присутствующих в рибосоме и выполняющих вспомогательные функции.

В нерабочей фазе субъединицы рибосомы разделены; при инициации трансляционного процесса рРНК малой субчастицы соединяется с матричной РНК, после чего происходит полное объединение элементов рибосомы. При взаимодействии РНК малой субчастицы с мРНК последняя как бы протягивается через рибосому (что равнозначно движению рибосомы по мРНК). Рибосомная РНК большой субчастицы является рибозимом, то есть обладает ферментными свойствами. Она катализирует образование пептидных связей между аминокислотами в ходе синтеза белка.


Следует отметить, что наибольшая часть всей РНК в клетке приходится на долю рибосомной – 70-80 %. ДНК обладает большим количеством генов, кодирующих рРНК, что обеспечивает весьма интенсивную ее транскрипцию.

Транспортная РНК

Эта молекула распознается определенной аминокислотой при помощи особого фермента и, соединяясь с ней, производит транспортировку аминокислоты на рибосому, где служит посредником в процессе трансляции – синтеза белка. Перенос осуществляется путем диффузии в цитоплазме клетки.

Вновь синтезированные молекулы тРНК, так же как и другие виды РНК, подвергаются процессингу. Зрелая тРНК в активной форме имеет конформацию, напоминающую клеверный лист. На «черешке» листа – акцепторном участке – расположена последовательность ЦЦА с гидроксильной группой, которая связывается с аминокислотой. На противоположном конце «листа» находится антикодоновая петля, которая соединяется с комплементарным кодоном на мРНК. D-петля служит для связывания транспортной РНК с ферментом при взаимодействии с аминокислотой, а Т-петля – для связывания с большой субчастицей рибосомы.


Малые РНК

Эти виды РНК играют важную роль в клеточных процессах и сейчас активно изучаются.

Так, например, малые ядерные РНК в клетках эукариот участвуют в сплайсинге мРНК и, возможно, обладают каталитическими свойствами наряду с белками сплайсосом. Малые ядрышковые РНК участвуют в процессинге рибосомной и транспортной РНК.

Малые интерферирующие и микроРНК являются важнейшими элементами системы регуляции экспрессии генов, необходимой клетке для контроля собственной структуры и жизнедеятельности. Эта система – важная часть иммунного антивирусного ответа клетки.

Существует также класс малых РНК, функционирующих в комплексе с белками Piwi. Эти комплексы играют огромную роль в развитии клеток зародышевой линии, в сперматогенезе и в подавлении мобильных генетических элементов.

РНК-геном

Молекула РНК может использоваться в качестве генома большинством вирусов. Вирусные геномы бывают различными – одно- и двухцепочечными, кольцевыми или линейными. Также РНК-геномы вирусов часто бывают сегментированы и в целом короче, чем ДНК-содержащие геномы.

Существует семейство вирусов, генетическая информация которых, закодированная в РНК, после инфицирования клетки путем обратной транскрипции переписывается на ДНК, которая затем внедряется в геном клетки-жертвы. Это так называемые ретровирусы. К ним, в частности, относится вирус иммунодефицита человека.


Значение исследования РНК в современной науке

Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она - необходимый и важнейший элемент внутриклеточной жизнедеятельности. Множество процессов первостепенной значимости не обходятся без активного участия РНК. Механизмы таких процессов долгое время оставались неизвестными, но благодаря исследованию различных видов РНК и их функций постепенно проясняются многие детали.

Не исключено, что РНК сыграла решающую роль в возникновении и становлении жизни на заре истории Земли. Результаты недавних исследований говорят в пользу этой гипотезы, свидетельствуя о необычайной древности многих механизмов функционирования клетки с участием тех или иных видов РНК. Например, недавно открытые рибопереключатели в составе мРНК (система безбелковой регуляции активности генов на стадии транскрипции), по мнению многих исследователей, являются отголосками эпохи, когда примитивная жизнь строилась на основе РНК, без участия ДНК и белков. Также весьма древним компонентом системы регуляции считаются микроРНК. Особенности структуры каталитически активной рРНК свидетельствуют о ее постепенной эволюции путем присоединения новых фрагментов к древней проторибосоме.

Тщательное изучение того, какие виды РНК и каким образом заняты в тех или иных процессах, исключительно важно также для теоретических и прикладных областей медицины.

Различные виды ДНК и РНК - нуклеиновых кислот - это один из объектов изучения молекулярной биологии. Одним из наиболее многообещающих и быстро развивающихся направлений в этой науке в последние годы стало исследование РНК.

Кратко о строении РНК

Итак, РНК, рибонуклеиновая кислота, - это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу - полинуклеотид. Так образуется первичная структура РНК.

Вторичная структура - образование двойной цепочки - образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином - тройной водородной связи.

В рабочей форме молекула РНК образует также третичную структуру - особое пространственное строение, конформацию.

Синтез РНК

Все виды РНК синтезируются при помощи фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК, так и на РНК-матрице.

Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода и протекает в несколько этапов.

Сначала происходит узнавание и связывание РНК-полимеразы с особой последовательностью нуклеотидов на ДНК - промотором, после чего двойная спираль ДНК раскручивается на небольшом участке и начинается сборка молекулы РНК над одной из цепочек, называемой матричной (другая цепочка ДНК называется кодирующей - именно ее копией является синтезируемая РНК). Асимметричность промотора определяет, какая из цепочек ДНК будет служить матрицей, и тем самым позволяет РНК-полимеразе инициировать синтез в правильном направлении.

Следующий этап называется элонгацией. Транскрипционный комплекс, включающий РНК-полимеразу и расплетенный участок с гибридом ДНК-РНК, начинает движение. По мере этого перемещения наращиваемая цепочка РНК постепенно отделяется, а двойная спираль ДНК расплетается перед комплексом и восстанавливается за ним.

Завершающий этап синтеза наступает, когда РНК-полимераза достигает особого участка матрицы, называемого терминатором. Терминация (окончание) процесса может достигаться различными способами.

Основные виды РНК и их функции в клетке

Они следующие:

  • Матричная или информационная (мРНК). Посредством ее осуществляется транскрипция - перенос генетической информации с ДНК.
  • Рибосомная (рРНК), обеспечивающая процесс трансляции - синтез белка на матрице мРНК.
  • Транспортная (тРНК). Производит узнавание и транспортировку аминокислоты на рибосому, где происходит синтез белка, а также принимает участие в трансляции.
  • Малые РНК - обширный класс молекул небольшой длины, осуществляющих разнообразные функции в ходе процессов транскрипции, созревания РНК, трансляции.
  • РНК-геномы - кодирующие последовательности, которые содержат генетическую информацию у некоторых вирусов и вироидов.

В 1980-х годах была открыта каталитическая активность РНК. Молекулы, обладающие этим свойством, получили название рибозимов. Естественных рибозимов пока известно не так много, каталитическая способность их ниже, чем у белков, однако в клетке они выполняют исключительно важные функции. В настоящее время ведутся успешные работы по синтезу рибозимов, имеющие в том числе и прикладное значение.

Остановимся подробнее на различных видах молекул РНК.

Матричная (информационная) РНК

Эта молекула синтезируется над расплетенным участком ДНК, копируя таким образом ген, кодирующий тот или иной белок.

РНК эукариотических клеток, прежде чем стать, в свою очередь, матрицей для синтеза белка, должны созреть, то есть пройти через комплекс различных модификаций - процессинг.

Прежде всего, еще на стадии транскрипции, молекула подвергается кэпированию: к ее концу присоединяется особая структура из одного или нескольких модифицированных нуклеотидов - кэп. Он играет важную роль во многих последующих процессах и повышает стабильность мРНК. К другому концу первичного транскрипта присоединяется так называемый поли(А)хвост - последовательность адениновых нуклеотидов.

После этого пре-мРНК подвергается сплайсингу. Это удаление из молекулы некодирующих участков - интронов, которых много в ДНК эукариот. Далее происходит процедура редактирования мРНК, при которой химически модифицируется ее состав, а также метилирование, после чего зрелая мРНК покидает клеточное ядро.

Рибосомная РНК

Основу рибосомы - комплекса, обеспечивающего белковый синтез, составляют две длинные рРНК, которые образуют субчастицы рибосомы. Синтезируются они совместно в виде одной пре-рРНК, которая затем в ходе процессинга разделяется. В большую субчастицу входит также низкомолекулярная рРНК, синтезируемая с отдельного гена. Рибосомные РНК обладают плотно упакованной третичной структурой, которая служит каркасом для белков, присутствующих в рибосоме и выполняющих вспомогательные функции.

В нерабочей фазе субъединицы рибосомы разделены; при инициации трансляционного процесса рРНК малой субчастицы соединяется с матричной РНК, после чего происходит полное объединение элементов рибосомы. При взаимодействии РНК малой субчастицы с мРНК последняя как бы протягивается через рибосому (что равнозначно движению рибосомы по мРНК). Рибосомная РНК большой субчастицы является рибозимом, то есть обладает ферментными свойствами. Она катализирует образование пептидных связей между аминокислотами в ходе синтеза белка.

Следует отметить, что наибольшая часть всей РНК в клетке приходится на долю рибосомной - 70-80 %. ДНК обладает большим количеством генов, кодирующих рРНК, что обеспечивает весьма интенсивную ее транскрипцию.

Транспортная РНК

Эта молекула распознается определенной аминокислотой при помощи особого фермента и, соединяясь с ней, производит транспортировку аминокислоты на рибосому, где служит посредником в процессе трансляции - синтеза белка. Перенос осуществляется путем диффузии в цитоплазме клетки.

Вновь синтезированные молекулы тРНК, так же как и другие виды РНК, подвергаются процессингу. Зрелая тРНК в активной форме имеет конформацию, напоминающую клеверный лист. На «черешке» листа - акцепторном участке - расположена последовательность ЦЦА с гидроксильной группой, которая связывается с аминокислотой. На противоположном конце «листа» находится антикодоновая петля, которая соединяется с комплементарным кодоном на мРНК. D-петля служит для связывания транспортной РНК с ферментом при взаимодействии с аминокислотой, а Т-петля - для связывания с большой субчастицей рибосомы.

Малые РНК

Эти виды РНК играют важную роль в клеточных процессах и сейчас активно изучаются.

Так, например, малые ядерные РНК в клетках эукариот участвуют в сплайсинге мРНК и, возможно, обладают каталитическими свойствами наряду с белками сплайсосом. Малые ядрышковые РНК участвуют в процессинге рибосомной и транспортной РНК.

Малые интерферирующие и микроРНК являются важнейшими элементами системы регуляции экспрессии генов, необходимой клетке для контроля собственной структуры и жизнедеятельности. Эта система - важная часть иммунного антивирусного ответа клетки.

Существует также класс малых РНК, функционирующих в комплексе с белками Piwi. Эти комплексы играют огромную роль в развитии клеток зародышевой линии, в сперматогенезе и в подавлении мобильных генетических элементов.

РНК-геном

Молекула РНК может использоваться в качестве генома большинством вирусов. Вирусные геномы бывают различными - одно- и двухцепочечными, кольцевыми или линейными. Также РНК-геномы вирусов часто бывают сегментированы и в целом короче, чем ДНК-содержащие геномы.

Существует семейство вирусов, генетическая информация которых, закодированная в РНК, после инфицирования клетки путем обратной транскрипции переписывается на ДНК, которая затем внедряется в геном клетки-жертвы. Это так называемые ретровирусы. К ним, в частности, относится вирус иммунодефицита человека.

Значение исследования РНК в современной науке

Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она - необходимый и важнейший элемент внутриклеточной жизнедеятельности. Множество процессов первостепенной значимости не обходятся без активного участия РНК. Механизмы таких процессов долгое время оставались неизвестными, но благодаря исследованию различных видов РНК и их функций постепенно проясняются многие детали.

Не исключено, что РНК сыграла решающую роль в возникновении и становлении жизни на заре истории Земли. Результаты недавних исследований говорят в пользу этой гипотезы, свидетельствуя о необычайной древности многих механизмов функционирования клетки с участием тех или иных видов РНК. Например, недавно открытые рибопереключатели в составе мРНК (система безбелковой регуляции активности генов на стадии транскрипции), по мнению многих исследователей, являются отголосками эпохи, когда примитивная жизнь строилась на основе РНК, без участия ДНК и белков. Также весьма древним компонентом системы регуляции считаются микроРНК. Особенности структуры каталитически активной рРНК свидетельствуют о ее постепенной эволюции путем присоединения новых фрагментов к древней проторибосоме.

Тщательное изучение того, какие виды РНК и каким образом заняты в тех или иных процессах, исключительно важно также для теоретических и прикладных областей медицины.

В отличие от ДНК, молекула РНК состоит из одной полинуклеотидной цепи, которая спирализована сама на себя, т.е. образует всевозможные «петли» и «шпильки» за счет взаимодействий комплементарных азотистых оснований (вторичная структура). У некоторых вирусов встречаются двуцепочечные РНК, которые несут генетическую информацию аналогично ДНК.

Существуют:

1 – матричные РНК (мРНК);

2 – рибосомные РНК (рРНК);

3 – транспортные РНК (тРНК).

Рибосомные РНК. На долю рРНК приходится 80-90% клеточной РНК. Локализованы в рибосомах, в комплексе с рибосомными белками. Рибосомы состоят из двух частей и представляют собой нуклеопротеины, состоящие из рРНК и белка в соотношении 1:1 (для эукариот) и 2:1 (для прокариот).

Биологическая роль рРНК – являются структурной основой рибосом, взаимодействует с мРНК и тРНК в процессе биосинтеза белка, принимает участие в процессе сборки полипептидной цепи.

У эукариот обнаружено 4 типа рРНК с различным коэф. седиментации: 18S(в малой части рибосомы), а 28S, 5,8S и 5S (сведбергов) – в большой части рибосомы.. Они различаются молекулярной массой (35 000-1 600 000) и локализацией в рибосомах.

Вторичная структура рРНК характеризуется спирализацией цепи самой на себя, третичная – ее компактной укладкой.

Матричные РНК. Матричная РНК составляет 2-3% от всей клеточной РНК, синтезируется мРНК в ядре клетки на матрице ДНК (процесс транскрипции), переписывая с нее генетическую информацию по принципу комплементарности.

ДНК -А-Т-Г-Ц-

ДНК -Т-А-Ц-Г-

мРНК -А-У-Г-Ц-

Затем мРНК поступают в цитоплазму, соединяются с рибосомой и выполняют роль матрицы для биосинтеза белка. Каждой аминокислоте соответствует в мРНК определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты. Последовательность кодонов в цепи мРНК определяет последовательность аминокислот в белке. Всего может быть 64 кодона. Из них 61 кодон кодирует аминокислоты, а 3 кодона – кодоны терминаторы (терминирующие), которые обозначают окончание белкового синтеза. Существуют также инициирующие кодоны, которые соответствуют первой аминокислоте в белке и чаще всего соответствуют аминокислоте метионину.

Поскольку мРНК несет наследственную информацию о первичной структуре белка, нередко ее называют информационной РНК (иРНК). Каждый отдельный белок, синтезируемый в клетке, кодируется определенной «своей» мРНК или ее участком. мРНК образует несколько двуспиральных «шпилек», на концах которых располагаются знаки (например, ААУААА) инициации (начала синтеза белка) и терминации (окончания синтеза белка).

Т.о. информация о строении белка закодирована в ДНК с помощью генетического кода, который является линейным, непрерывным, триплетным, выражденным. Он является универсальным.

Молекулярный вес мРНК варьирует в широких пределах от 35 000 до нескольких млн. мРНК ранее считались короткоживущими РНК. Для микроорганизмов время жизни мРНК несколько секунд или минут. Но для эукариот – оно может составлять от нескольких часов до нескольких недель.

Транспортная РНК. Составляют 10-20% клеточной РНК.

Функции тРНК:

1 - связывают аминокислоты и транспортируют их в рибосому, где происходит синтез белка;

2 – кодируют аминокислоты;

3 – Расшифровывают генетический код.

Каждая тРНК может переносить только 1 строго определенную аминокислоту.

тРНК именуются по названию аминокислот. Например, аланиновая тРНК. тРНК, связывающие одну и ту же аминокислоту, называют изоакцепторными и нумеруют: тРНК 1 вал, тРНК 2 вал и т.д.

Вторичная структура всех тРНК имеет форму «клеверного листа». В его составе различают:

1. акцепторный стебель – к нему присоединяется аминокислота.

2. Псевдоуридиловая петля – используется для связи тРНК с рибосомой.

3. Дополнительная петля – назначение неизвестно.

4. Антикодоновая петля – содержит антикодон (триплет нуклеиновых остатков, которые комплементарны кодону мРНК, с его помощью тРНК соединяется с мРНК);

5. Дигидроуридиновая петля – обеспечивает связывание тРНК со специфическим ферментом (аминоацил-тРНК-синтетазой), который соединяет аминокислоту с тРНК.

Стабилизируется вторичная структура водородными связями между комплементарными основаниями.

Третичная структура тРНК имеет неправильную Г-образную форму. стабилизирована водородными и др. связями.

Мономеры РНК в составе нуклеотидов содержат пятиуглеродный сахар (пентоза), фосфорную кислоту (остаток фосфорной кислоты) и азотистое основание (см. Рис. 2).

Рис. 2. Строение нуклеотида РНК

Азотистые основания РНК - урацил, цитозин, аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой (см. Рис. 2).

РНК - одноцепочная молекула значительно меньших размеров, чем молекула ДНК.

Молекула РНК содержит от 75 до 10 000 нуклеотидов.

Рис. 3. РНК-содержащий вирус

Многие вирусы, например вирус гриппа, содержат в качестве единственной нуклеиновой кислоты молекулу РНК (см. Рис. 3). РНК-содержащих вирусов, болезнетворных для человека, больше, чем ДНК-содержащих. Они вызывают полиомиелит, гепатит А, острые простудные заболевания.

Арбовирусы - вирусы, которые переносятся членистоногими. Являются возбудителями клещевого и японского энцефалита, а также желтой лихорадки.

Реовирусы (см. Рис. 4), редкие возбудители респираторных и кишечных заболеваний человека, стали предметом особого научного интереса из-за того, что их генетический материал представлен в виде двухцепочной молекулы РНК.

Рис. 4. Строение реовируса

Также существуют ретровирусы, которые вызывают ряд онкологических заболеваний.

В зависимости от строения и выполняемой функции различают три основных типа РНК: рибосомную, транспортную и информационную (матричную).

1. Информационная РНК

Как показали исследования, информационная РНК составляет 3-5 % от общего содержания РНК в клетке. Это одноцепочная молекула, которая образовывается в процессе транскрипции на одной из цепей молекулы ДНК. Это связано с тем, что ДНК у ядерных организмов находятся в ядре, а синтез белка происходит на рибосомах в цитоплазме, поэтому возникла необходимость в «посреднике». Функцию «посредника» выполняет матричная РНК, она передает информацию о структуре белка из ядра клеток, где находится ДНК, к рибосомам, где эта информация реализуется (см. Рис. 5).

Рис. 5. Матричная РНК (мРНК)

В зависимости от объема копируемой информации, молекула матричной РНК может иметь различную длину.

Большинство матричных РНК существуют в клетке непродолжительное время. В бактериальных клетках существование таких РНК определяется минутами, а в клетках млекопитающих (в эритроцитах) синтез гемоглобина (белка) продолжается после утраты эритроцитами ядра в течение нескольких дней.

2. Рибосомная РНК

Рибосомные РНК (см. Рис. 6) составляют 80 % от всех рибосом, присутствующих в клетке. Эти РНК синтезируются в ядрышке, а в клетке они находятся в цитоплазме, где вместе с белками образуют рибосомы. На рибосомах происходит синтез белка. Здесь «код», заключенный в матричную РНК, транслируется в аминокислотную последовательность молекулы белка.

Рис. 6. Рибосомная РНК (рРНК)

3. Транспортная РНК

Транспортные РНК (см. Рис. 7) образуются в ядре на ДНК, а затем переходят в цитоплазму.

Рис. 7. Транспортная РНК (тРНК)

На долю таких РНК приходится около 10 % от общего содержания РНК в клетке. Они имеют самые короткие молекулы из 80-100 нуклеотидов.

Транспортные РНК присоединяют к себе аминокислоту и транспортируют ее к месту синтеза белка, к рибосомам.

Все известные транспортные РНК за счет комплементарного взаимодействия между азотистыми основаниями образовывают вторичную структуру, по форме напоминающую лист клевера (см. Рис. 8). В молекуле тРНК есть два активных участка - триплет антикодон на одном конце и акцепторный участок, присоединяющий аминокислоту, на другом.

Рис. 8. Строение тРНК («клеверный лист»)

Каждой аминокислоте соответствует комбинация из трех нуклеотидов, которая носит название триплет .

Рис. 9. Таблица генетического кода

Кодирующие аминокислоты триплеты - кодоны ДНК (см. Рис. 9) - передаются в виде информации триплетов (кодонов) мРНК. У верхушки клеверного листа тРНК располагается триплет нуклеотидов, который комплементарен соответствующему кодону мРНК (см. Рис. 10). Этот триплет различен для тРНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносятся данной тРНК. Он получил название антикодон .

Рис. 10. тРНК

Акцепторный конец является «посадочной площадкой» для определенной аминокислоты.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Концепция РНК мира заключается в том, что когда-то очень давно молекула РНК могла выполнять функцию как молекулы ДНК, так и белков.

В живых организмах практически все процессы происходят благодаря ферментам белковой природы. Белки, однако, не могут самореплицироваться и синтезируются в клетки на основании информации, заложенной в ДНК. Но и удвоение ДНК происходит только благодаря участию белков и РНК. Следовательно, образуется замкнутый круг, из-за которого в рамках теории возникновения жизни спонтанное возникновение такой сложной системы маловероятно.

В начале 1980-х годов в лаборатории ученых Чека и Олтмена (обладатели нобелевской премии по химии) в США была открыта каталитическая способность РНК. РНК-катализаторы были названы рибозимами (см. Рис. 11).

Рис. 11. Структура рибозимомолекулы РНК, выполняющей функцию катализа

Оказалось, что активный центр рибосом тоже содержит большое количество рибосомных РНК. Также РНК способны создавать двойную цепочку и самореплицироваться. То есть РНК могли существовать полностью автономно, катализируя метаболические реакции, например синтеза новых рибонуклеатидов, и самовоспроизводясь, сохраняя из поколения в поколение каталитические свойства. Накопление случайных мутаций привело к появлению РНК, катализирующих синтез определенных белков, являющихся более эффективными катализаторами, в связи с чем эти мутации закреплялись в ходе естественного отбора. Также возникли специализированные хранилища генетической информации - молекула ДНК, а РНК стала посредником между ДНК и белками.

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.
  1. Orgchem.ru ().
  2. Appteka.ru ().
  3. Youtube.com ().

Домашнее задание

  1. Вопросы 4, 5 в конце параграфа 12 (стр. 52) - Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс ()
  2. Где в клетке находятся нуклеиновые кислоты?

РНК,как и ДНК, представляет собой полинуклеотид. Структура нуклеотидов РНК с таковой ДНК, но имеются следующие отличия:

  • Вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар- рибоза;
  • Вместо азотистого основания тимина- урацил;
  • Молекула РНК обычно представлена одной цепочкой (у некоторых вирусов- двумя);

В клетках существуют три типа РНК: информационная,транспортная и рибосомальная.

Инфармационная РНК (и-РНК) представляет собой копию определённого участка ДНК и выполняет роль переносчика генетической информации от ДНК к месту синтеза белка (рибосомы) и непосредственно участвует в сборке его молекул.

Транспортные РНК (т-РНК)переносят аминокислоты из цитоплазмы в рибосомы.

Рибосомальная РНК (р-РНК) входит в состав рибосом. Считают, что р-РНК обеспечивает определённое пространственное взаиморасположение и-РНК и т-РНК.

Роль РНК в процессе реализации наследственной информации.

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их нормального развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты - РНК.

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин. РНК синтезируется на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности и антипараллельности, причем аденину ДНК в РНК комплементарен урацил. Все многообразие РНК, действующих в клетке, можно разделить на три основных вида: мРНК, тРНК, рРНК.

По химической организации материала наследственности и изменчивости эукариотические и прокариотические клетки принципиально не отличаются друг от друга. Генетический материал у них представлен ДНК. Общим для них является и принцип записи генетической информации, а также генетический код. Одни и те же аминокислоты шифруются у про- и эукариот одинаковыми кодонами. Принципиально одинаковым образом у названных типов клеток осуществляется и использование наследственной информации, хранящейся в ДНК. Сначала она транскрибируется в нуклеотидную последовательность молекулы мРНК, а затем транслируется в аминокислотную последовательность пептида на рибосомах с участием тРНК. Однако некоторые особенности организации наследственного материала, отличающие эукариотические клетки от прокариотических, обусловливают различия в использовании их генетической информации.

Наследственный материал прокариотической клетки содержится главным образом в единственной кольцевой молекуле ДНК. Она располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты, часть из которых заключена в рибосомах. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей, реализующихся в ходе синтеза белков, тРНК или рРНК.

Наследственный материал эукариот больше по объему, чем у прокариот. Он расположен в основном в особых ядерных структурах -хромосомах , которые отделены от цитоплазмы ядерной оболочкой. Необходимый для синтеза белков аппарат, состоящий из рибосом, тРНК, набора аминокислот и ферментов, находится в цитоплазме клетки.

Значительные отличия имеются в молекулярной организации генов эукариотической клетки. В большинстве из них кодирующие последовательности экзоны прерываются интронными участками, которые не используются при синтезе т-РНК, р-РНК или пептидов. Количество таких участков варьирует в разных генах.. Эти участки удаляются из первично-транскрибируемой РНК, в связи с чем использование генетической информации в эукариотической клетке происходит несколько иначе. В прокариотической клетке, где наследственный материал и аппарат биосинтеза белка пространственно не разобщены, транскрипция и трансляция происходят почти одновременно. В эукариотической клетке эти два этапа не только пространственно отделены ядерной оболочкой, но и во времени их разделяют процессы созревания м-РНК, из которой должны быть удалены неинформативные последовательности.

Кроме указанных различий на каждом этапе экспрессии генетической информации можно отметить некоторые особенности течения этих процессов у про- и эукариот.