Атомное ядро его характеристики. Состав атомных ядер

Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро – центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома – атома водорода – состоит из одной элементарной частицы – протона.

Диаметр ядра атома равен примерно 10 -13 – 10 -12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95 – 99,98 %) сосредоточена в ядре. Если бы удалось получить 1 см 3 чистого ядерного вещества, масса его составила бы 100 – 200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.

Протон – элементарная частица, ядро атома водорода. Масса протона равна 1,6721х10 -27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66х10 -19 Кл. Кулон – единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).

Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть, от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон – это водород, если 26 протонов – это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).

Н ейтрон – электрически нейтральная частица с массой 1,6749 х10 -27 кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии – нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой – А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A – Z.

Электрон – элементарная частица, носитель наименьшей массы – 0,91095х10 -27 г и наименьшего электрического заряда – 1,6021х10 -19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.

Позитрон – элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.

Различные типы ядер называют нуклидами. Нуклид – вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом): 17 35 Cl, 17 37 Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами . Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.

Изотопы обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А – массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32 Р, 33 Р или 15 32 Р и 15 33 Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор – 32, фосфор – 33.

Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1 Н-протия, известен тяжелый водород 2 Н-дейтерий и сверхтяжелый водород 3 Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.

В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.

Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, изотопы углерода 12 С и 14 С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90 Sr, 131 J, 137 Cs.

Протонно-электронная теория

К началу $1932$ г. Было известно только три элементарные частицы: электрон, протон и нейтрон. По этой причине было сделано предположение, что ядро атома состоит с протонов и электронов (протонно-электронная гипотеза). Считалось, что в состав ядра с номером $Z$ в периодической системе элементов Д. И. Менделеева и массовым числом $A$ входит $A$ протонов и $Z-A$ нейтронов. В соответствии с этой гипотезой электроны, которые входили в состав ядра, выполняли роль «цементирующего» средства, с помощью которого положительно заряженные протоны удерживались в ядре. Сторонники протонно-электронной гипотезы состава атомного ядра считали, что $\beta ^-$ - радиоактивность -- это подтверждение правильности гипотезы. Но эта гипотеза оказалась на в состоянии объяснить результаты эксперимента и была отброшена. Одним с таких затруднений была невозможность объяснить то, что спин ядра азота $^{14}_7N$ равен единице $(\hbar)$. В соответствии с протонно-электронной гипотезой, ядро азота $^{14}_7N$ должно состоять с $14$ протонов и $7$ электронов. Спин протонов и электронов равен $1/2$. По этой причине ядро атома азота, которое состоит в соответствии с этой гипотезой с $21$ частицы, должно иметь спин $1/2,\ 3/2,\ 5/2,\dots 21/2$. Это несоответствие протонно-электронной теории названо «азотной катастрофой». Так же непонятным было то, что при наличии электронов в ядре его магнитный момент имеет малый магнитный момент по сравнению с магнитным моментом электрона.

В $1932$ году Дж. Чедвик открыл нейтрон. После этого открытия Д. Д. Иваненко и Е. Г. Гапон выдвинули гипотезу о протонно-нейтронном строении атомного ядра, какую подробно разработал В. Гейзенберг.

Замечание 1

Протонно-нейтронный состав ядра подтвержден не только теоретическими выводами, но и непосредственно опытами по расщеплению ядра на протоны и нейтроны. Сейчас общепринято, что атомное ядро состоит с протонов и нейтронов, которые так же называются нуклонами (от латинского nucleus -- ядро, зерно).

Строение атомного ядра

Ядро являет собой центральную часть атома, в которой сосредоточено положительный электрический заряд и основная часть массы атома. Размеры ядра, в сравнении с орбитами электронов чрезвычайно малы: $10^{-15}-10^{-14}\ м$. ядра состоят с протонов и нейтронов, которые почти одинаковы по массе, но электрический заряд несет только протон. Полное число протонов называется атомным номером $Z$ атома, который совпадает с числом электронов у нейтральном атоме. Нуклоны удерживаются в ядре большими силами, по своей природе эти силы не относятся ни к электрическим ни к гравитационным, а по величине они на много превышают силы, которые связывают электроны с ядром.

Согласно протонно-нейтронной модели строения ядра:

  • ядра всех химических элементов состоят из нуклонов;
  • заряд ядра обусловлен только протонами;
  • число протонов в ядре равно порядковому номеру элемента;
  • число нейтронов равно разности между массовым числом и числом протонов ($N=A-Z$)

Протон ($^2_1H\ или\ p$) -- положительно заряженная частица: её заряд равен заряду электрона $e=1.6\cdot 10^{-19}\ Кл$, а масса покоя $m_p=1.627\cdot 10^{-27}\ кг$. Протон является ядром налёгшего нуклона атома гидрогена.

Для упрощения записей и расчётов массу ядра зачастую определяют в атомных единицах массы (а.е.м) или в единицах энергии (записывая вместо массы соответствующую энергию $E=mc^2$ в электрон-вольтах). За атомною единицу массы берут $1/12$ массы нуклида углерода $^{12}_6С$. В этих единицах получаем:

Протон подобно электрону имеет собственный момент импульса -- спин, который равен $1/2$ (в единицах $\hbar $). Последний, во внешнем магнитном поле может ориентироваться только так, что его проекция и направления поля равны $+1/2$ или $-1/2$. Протон, как и электрон, подлежит квантовой статистике Ферми-Дирака, т.е. принадлежит к фермионам.

Протон характеризируется собственным магнитным моментом, который для частицы со спином $1/2$ зарядом $e$ и массой $m$ равен

Для электрона собственный магнитный момент равен

Для описания магнетизма нуклонов и ядер используют ядерный магнетон (в $1836$ раз меньше магнетона Бора):

Поначалу считали, что магнитный момент протона равен ядерному магнетону, т.к. его масса в $1836$ раз больше массы электрона. Но измерения показали, что на самом деле собственный магнитный момент протона в $2,79$ раз больше от ядерного магнетрона, имеет положительный знак, т.е. направление совпадает со спином.

Современная физика объясняет эти разногласия тем, что протоны и нейтроны взаимопреобразуются и на протяжении некоторого времени пребывают в состоянии диссоциации на $\pi ^\pm $ -- мезон и соответственного знака другой нуклон:

Масса покоя $\pi ^\pm $ - мезона равна $193,63$ МэВ, по этому его собственный магнитный момент в $6,6$ раз больше от ядерного магнетона. В измерениях появляется некоторое эффективное значение магнитного момента протона и $\pi ^+$ -- мезонного окружения.

Нейтрон ($n$) -- электрически нейтральная частица; ее масса покоя

Хоть нейтрон и лишен заряда, он имеет магнитный момент $\mu _n=-1.91\mu _Я$. Знак «$-$» показывает, что за направлением магнитный момент противоположный спину протона. Магнетизм нейтрона определяется эффективным значением магнитного момента частиц, на которые он способен диссоцыировать.

В свободном состоянии нейтрон неустойчивая частица и произвольно распадается (период полураспада $12$ мин): излучая $\beta $ -- частицу и антинейтрино он превращается в протон. Схема распада нейтрона записывается в таком виде:

В отличии от внутриядерного распада нейтрона $\beta $ -- распад принадлежит и до внутреннего распада и до физики элементарных частиц.

Взаимное преобразование нейтрона и протона, равенство спинов, приближённость масс и свойств дают основания предполагать, что речь идет о двух разновидностях одной и той же ядерной частицы -- нуклона. Протонно-нейтронная теория хорошо согласуется с экспериментальными данными.

Как составляющие ядра протоны и нейтроны обнаруживают в многочисленных реакциях деления и синтеза.

В произвольных и штучных делениях ядер наблюдаются так же потоки электронов, позитронов, мезонов, нейтрино и антинейтрино. Масса $\beta $ -- частицы (электрон или позитрон) в $1836$ раз меньше массы нуклона. Мезоны -- положительные, отрицательные и нулевые частицы -- по массе занимают промежуточное место между $\beta $ -- частицами и нуклонами; время жизни таких частиц очень мало и составляет миллионные доли секунды. Нейтрино и антинейтрино -- элементарные частицы, масса покоя которых равна нулю. Однако электроны, позитроны и мезоны не могут быть составляющими ядра. Эти легкие частицы не могут быть локализованы в малом объеме, которым является ядро радиусом $\sim 10^{-15}\ м$.

Для доказательства этого определим энергию электрического взаимодействия (например, электрона с позитроном или протоном в ядре)

и сравним ее с собственной энергией электрона

Посколькy энергия внешнего взаимодействия превышает собственную энергию электрона, он не может существовать и сохранять собственную индивидуальность, в условиях ядра он будет уничтожен. Другая ситуация с нуклонами, их собственная энергия более $900$ МэВ, поэтому в ядре они могут сохранять свои особенности.

Легкие частицы излучаются с ядер в процессе перехода их с одного состояния в другое.

ОПРЕДЕЛЕНИЕ

Атом состоит из положительно заряженного ядра, внутри которого находятся протоны и нейтроны, а по орбитам вокруг него движутся электроны. Ядро атома расположено в центре и в нем сосредоточена практически вся его масса.

По величине заряда ядра атома определяют химический элемент, к которому этот атом относится.

Существование атомного ядра было доказано в 1911 году Э. Резерфордом и описано в труде под названием «Рассеяние α и β-лучей и строение атома». После этого разными учеными выдвигались многочисленные теории строения атомного ядра (капельная (Н. Бор), оболочечная, кластерная, оптическая и т.д.).

Электронное строение ядра атома

Согласно современным представлениям атомное ядро состоит из положительно заряженных протонов и нейтральных нейтронов, которые вместе называют нуклонами. Они удерживаются в ядре за счет сильного взаимодействия.

Число протонов в ядре называют зарядовым числом (Z). Его можно определить при помощи Периодической таблицы Д. И. Менделеева - оно равно порядковому номеру химического элемента, к которому относится атом.

Число нейтронов в ядре называют изотопическим числом (N). Суммарное количество нуклонов в ядре называют массовым числом (M) и оно равно относительной атомной массе атома химического элемента, указанной в Периодической таблице Д. И. Менделеева.

Ядра с одинаковым числом нейтронов, но разным числом протонов называют изотонами. Если же в ядре одинаковое число протонов, но различное нейтронов - изотопами. В случае, когда равны массовые числа, но различный состав нуклонов - изобарами.

Ядро атома может находиться в стабильном (основном) состоянии и в возбужденном.

Рассмотрим строение ядра атома на примере химического элемента кислорода. Кислород имеет порядковый номер 8 в Периодической таблице Д. И. Менделеева и относительную атомную массу 16 а.е.м. Это означает, что ядро атома кислорода имеет заряд равный (+8). В ядре содержится 8 протонов и 8 нейтронов (Z=8, N=8, M=16), а по 2-м орбитам вокруг ядра движутся 8 электронов (рис. 1).

Рис. 1. Схематичное изображение строения атома кислорода.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Охарактеризуйте квантовыми числами все электроны, которые находятся на 3p-подуровне.
Решение На p-подуровне 3-го уровня находится шесть электронов:

§1 Заряд и масса, атомных ядер

Важнейшими характеристиками ядра являются его заряд и масса М .

Z - заряд ядра определяется количеством положительных элементарных зарядов сосредоточенных в ядре. Носителем положительного элементарного заряда р = 1,6021·10 -19 Кл в ядре является протон. Атом в целом нейтрален и заряд ядра определяет одновременно число электронов в атоме. Распределение электронов в атоме по энергетическим оболочкам и подоболочкам суще-ственно зависит от их общего числа в атоме. Поэтому заряд ядра в значительной мере определяет распределение электронов по их состояниям в атоме и положение элемента в периодической системе Менделеева. Заряд ядра равен q я = z · e , где z -зарядовое число ядра, равное порядковому номеру элемента в системе Менделеева.

Масса атомного ядра практически совпадает с массой атома, потому что масса электронов всех атомов, кроме водородного, составляет примерно 2,5· 10 -4 массы атомов. Массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята1/12 масса атома углерода .

1 ае.м. =1,6605655(86)·10 -27 кг.

m я = m a - Z m e .

Изотопами, называются разновидности атомов данного химического элемента, обладающие одинаковым зарядом, но различающееся массой.

Целое число ближайшее к атомной массе, выраженной в а.е. м . называется массовым число м и обозначается буквой А . Обозначение химического эле-мента: А - массовое число, X - символ химического элемента, Z -зарядовое чис-ло - порядковый номер в таблице Менделеева ():

Бериллий ; Изотопы: , ", .

Радиус ядра:

где А - массовое число.

§2 Состав ядра

Ядро атома водорода называется протоном

m протона = 1,00783 а.е.м. , .

Схема атома водорода

В 1932 г. была открыта частица названная нейтроном, обладающая мас-сой близкой к массе протона (m нейтрона = 1,00867 а.е.м.) и не имеющая электрического заряда. Тогда же Д.Д. Иваненко сформулировал гипотезу о протонно - нейтроном строении ядра: ядро состоит из протонов и нейтронов и их сумма равна массовому числу А . 3арядовое число Z определяет число протонов в ядре, число нейтронов N =А - Z .

Элементарные частицы - протоны и нейтроны, входящие в состав ядра , получили общее название нуклонов. Нуклоны ядер находятся в состояниях , существенно отличающихся от их свободных состояний. Между нуклонами осуществляется особое я де р ное взаимодействие. Говорят, что нуклон может находиться в двух «зарядовых состояниях» - протонном с зарядом + е , и ней-тронном с зарядом 0.

§3 Энергия связи ядра. Дефект массы. Ядерные силы

Ядерные частицы - протоны и нейтроны - прочно удерживаются внутри ядра, поэтому между ними действуют очень большие силы притяжения, спо-собные противостоять огромным силам отталкивания между одноименно за-ряженными протонами. Эти особые силы, возникающие на малых расстояниях между нуклонам, называются ядерными силами. Ядерные силы не являются электростатическими (кулоновскими).

Изучение ядра показало, что действующие между нуклонами ядерные силы обладают следующими особенностями:

а) это силы короткодействующие - проявляющееся на расстояниях порядка 10 -15 м и резко убывающие даже при незначительном увеличения рас-стояния;

б) ядерные силы не зависят от того, имеет ли частица (нуклон) заряд - за-рядовая независимость ядерных сил. Ядерные силы, действующие между нейтроном и протоном, между двумя нейтронами, между двумя протонами равны. Протон и нейтрон по отношению к ядерным силам одинаковы.

Энергия связи является мерой устойчивости атомного ядра. Энергия связи ядра равна работе, которую нужно совершить для расщепления ядра на со-ставляющие его нуклоны без сообщения им кинетической энергии

М Я < Σ(m p + m n )

Мя - масса ядра

Измерение масс ядер показывает, что масса покой ядра меньше, чем сумма масс покоя составляющих его нуклонов.

Величина

служит мерой энергия связи и называется дефектом массы.

Уравнение Эйнштейна в специальной теории относительности связывает энергию и массу покоя частицы.

В общем случае энергия связи ядра может быть подсчитана по формуле

где Z - зарядовое число (число протонов в ядре);

А - массовое число (общее число нуклонов в ядре);

m p , , m n и М я - масса протона, нейтрона а ядра

Дефект массы (Δm ) равны.й 1 а.е. м. (а.е.м. - атомная единица массы) со-ответствует энергий связи (Е св), равной 1 а.е.э. (а.е.э. - атомная единица энер-гии) и равной 1а.е.м.·с 2 = 931 МэВ.

§ 4 Ядерные реакции

Изменения ядер при взаимодействии их с отдельными частицами и друг с другом принято называть ядерными реакциями.

Различают следующие, наиболее часто встречающиеся ядерные реакции.

  1. Реакция превращения . В этом случае налетевшая частица остается в ядре, но промежуточное ядро испускает какую-либо другую частицу, поэто-му ядро - продукт отличается от ядра-мишени.
  1. Реакция радиационного захвата . Налетевшая частица застревает в ядре, но возбужденное ядро испускает избыточную энергию, излучая γ- фотон (используется в работе ядерных реакторов)

Пример реакции захвата нейтронов кадмием

или фосфором


  1. Рассеяние . Промежуточное ядро испускает частицу, тождественную

с налетевшей, причем может быть:

Упругое рассеяние нейтронов углеродом (используется в реакторах для замедления нейтронов):

Неупругое рассеяние :

  1. Реакция деления . Это реакция, идущая всегда с выделением энергии. Она является основой для технического получения и использования ядерной энергии. При реакции деления возбуждение промежуточного составного ядра столь велико, что оно делится на два, примерно равных осколка, с выде-лением нескольких нейтронов.

Если энергия возбуждения невелика, то разделение ядра не происходит, а ядро, потеряв избыток энергии путем испускания γ - фотона или нейтрона, воз-вратится в нормальное состояние (рис. 1). Но если вносимая нейтроном энер-гия велика, то возбужденное ядро начинает деформироваться, в нем образуется перетяжка и в результате оно делится на два осколка, разлетающихся с ог-ромными скоростями, при этом испускается два нейтрона
(рис. 2).

Цепная реакция - саморазвивающаяся реакция деления. Для осуществ-ления её необходимо, чтобы из вторичных нейтронов, образующихся при од-ном акте деления, хотя бы один смог вызвать следующий акт деления: (так как некоторые нейтроны могут участвовать в реакциях захвата не вызывая деле-ния) . Количественно условие существования цепной реакции выражает коэффициент размножения

k < 1 - цепная реакция невозможна, k = 1 (m = m кр ) - цепная реакций с по-стоянным количеством нейтронов (в ядерном реакторе}, k > 1 (m > m кр ) - ядерные бомбы.

РАДИОАКТИВНОСТЬ

§1 Естественная радиоактивность

Радиоактивность представляет собой самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существую-щих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных ре-акций.

Типы радиоактивности:

  1. α-распад.

Испускание ядрами некоторых химических элементов α-системы двух протонов и двух нейтронов, соединенных воедино (а-частица - ядро атома ге-лия )

α-распад присущ тяжелым ядрам с А > 200 и Z > 82. При движении в веще-стве α-частицы производят на своем пути сильную ионизацию атомов (иони-зация - отрыв электронов от атома), действуя на них своим электрическим полем. Расстояние, на которое пролетает α-частица в веществе до полной её остановки, называется пробегом частицы или проникающей способностью (обозначается R , [ R ] = м, см). . При нормальных условиях α- частица образует в воздухе 30000 пар ионов на 1 см пути. Удельной ионизаци-ей называется число пар ионов образующихся на 1 см длины пробега. α- частица оказывает сильное биологическое действие.

Правило смещения для α-распада:

2. β-распад.

а) электронный (β -): ядро испускает электрон и электронное антинейтрино

б) позитронный (β +):ядро испускает позитрон и нейтрино

Эта процессы происходят, путем превращения одного вида нуклона в яд-ре в другой: нейтрона в протон или протона в нейтрон.

Электронов в ядре нет, они образуются в результате взаимного превра-щения нуклонов.

Позитрон - частица, отличающаяся от электрона только знаком за-ряда (+е = 1,6·10 -19 Кл)

Из эксперимента следует, что при β - распаде изотопы теряют одинаковое количество энергии. Следовательно, на основании закона сохранения энергии В. Паули предсказал, что выбрасывается еще одна легкая частица, названная антинейтрино. Антинейтрино не имеет заряда и массы. Потери энергии β - частицами при прохождении их через вещество вызываются, главным обра-зом, процессами ионизации. Часть энергии теряется на рентгеновское излуче-ние при торможении β - частицы ядрами поглощающего вещества. Так как β - частицы обладают малой массой, единичным зарядом и очень большими скоростями, то их ионизирующая способность невелика, (в 100 раз меньше, чем у α - частиц), следовательно, проникающая способность (пробег) у β - частиц суще-ственно больше, чем у α - частиц.

R β воздуха =200 м, R β Pb ≈ 3 мм

β - - распад происходит у естественных и искусственных радиоактивных ядер. β + - только при искусственной радиоактивности.

Правило смещения для β - - распада :

в) К - захват (электронный захват) - ядро поглощает один из электронов, находящихся на оболочке К (реже L или М ) своего атома, в результате чего один из протонов превращается а нейтрон, испуская при этом нейтрино

Схема К - захвата:

Место е электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.

  • γ-лучи.

Обычно все типы радиоактивности сопровождаются испусканием γ- лучей. γ-лучи - это электромагнитное излучение, обладающее длинами волн от одного до сотых долей ангстрем λ’=~ 1-0,01 Å=10 -10 -10 -12 м. Энергия γ-лучей достигает миллионов эВ.

W γ ~ MэB

1эВ=1,6·10 -19 Дж

Ядро, испытывающее радиоактивный распад, как правило, оказывается возбужденным, н его переход в основное состояние сопровождается испуска-нием γ - фотона. При этом энергия γ-фотона определяется условием

где Е 2 и E 1 -энергия ядра.

Е 2 - энергия в возбужденном состоянии;

Е 1 - энергия в основном состоянии.

Поглощение γ-лучей веществом обусловлено тремя основными процессами:

  • фотоэффектом (при hv < l MэB);
  • образованием пар электрон - позитрон;

или

  • рассеяние (эффект Комптона) -

Поглощение γ-лучей происходит по закону Бугера:

где μ- линейный коэффициент ослабления, зависящий от энергий γ - лучей и свойств среды;

І 0 - интенсивность падающего параллельного пучка;

I - интенсивность пучка после прохождения вещества толщиной х см.

γ-лучи - одно из наиболее проникающих излучений. Для наиболее жест-ких лучей (hν max ) толщина слоя половинного поглощения равна в свинце 1,6 см, в железе - 2,4 см, в алюминии - 12 см, в земле - 15 см.

§2 Основной закон радиоактивного распада.

Число распавшихся ядер dN пропорционально первоначальному числу ядер N и времени распада dt , dN ~ N dt . Основной закон радиоактивного распада в дифференциальной форме:

Коэффициент λ называется постоянной распада для данного вида ядер. Знак “-“ означает, что dN должно быть отрицательным, так как конечное чис-ло не распавшихся ядер меньше начального.

следовательно, λ характеризует долю ядер, распадающихся за единицу време-ни, т е. определяет скорость радиоактивного распада. λ не зависит от внешних условий, а определяется лишь внутренними свойствами ядер. [λ]=с -1 .

Основной закон радиоактивного распада в интегральной форме

где N 0 - первоначальное число радиоактивных ядер при t =0;

N - число не распавшихся ядер в момент времени t ;

λ - постоянная радиоактивного распада.

О скорости распада на практике судят используя не λ, а Т 1/2 - период по-лураспада - время, за которое распадается половина первоначального количества ядер. Связь Т 1/2 и λ

Т 1/2 U 238 = 4,5·10 6 лет, Т 1/2 Ra = 1590 лет, Т 1/2 Rn = 3,825 сут. Число распадов в единицу времени А = - dN / dt называется активностью данного радиоактивного вещества.

Из

следует,

[А] = 1Беккерель = 1распад/1с;

[А] = 1Ки = 1Кюри= 3,7·10 10 Бк.

Закон изменения активности

где А 0 =λ N 0 - начальная активность в момент времени t = 0;

А - активность в момент времени t .

Ядро атома состоит из нуклонов, которые подразделяются на протоны и нейтроны.

Символическое обозначение ядра атома:

А- число нуклонов, т.е. протонов + нейтронов (или атомная масса)
Z- число протонов (равно числу электронов)
N- число нейтронов (или атомный номер)

ЯДЕРНЫЕ СИЛЫ

Действуют между всеми нуклонами в ядре;
- силы притяжения;
- короткодействующие

Нуклоны притягиваются друг к другу ядерными силами, которые совершенно непохожи ни на гравитационные, ни на электростатические. . Ядерные силы очень быстро спадают с расстоянием. Радиус их действия порядка 0,000 000 000 000 001 метра.
Для этой сверхмалой длины, характеризующей размеры атомных ядер, ввели специальное обозначение - 1 Фм (в честь итальянского физика Э. Ферми, 1901-1954). Все ядра имеют размеры нескольких ферми. Радиус ядерных сил равен размеру нуклона, поэтому ядра - сгустки очень плотной материи. Возможно, самой плотной в земных условиях.
Ядерные силы - сильные взаимодействия. Они многократно превосходят кулоновскую силу (на одинаковом расстоянии). Короткодействие ограничивает действие ядерных сил. С ростом числа нуклонов ядра становятся неустойчивыми, и поэтому большинство тяжелых ядер радиоактивны, а совсем тяжелые вообще не могут существовать.
Конечное число элементов в природе - следствие короткодействия ядерных сил.



Строение атома - Класс!ная физика

Знаете ли вы?

В середине XX века теория ядра предсказала существование стабильных элементов с порядковыми номерами Z = =110 -114.
В Дубне был получен 114-й элемент с атомной массой А = 289, который "жил" всего 30 секунд, что невероятно долго для атома с ядром такого размера.
Сегодня теоретики уже обсуждают свойства сверхтяжелых ядер массой 300 и даже 500.

Атомы с одинаковыми атомными номерами называют изотопами: в таблице Менделеева
они расположены в одной клеточке (по-гречески изос - равный, топос - место).
Химические свойства изотопов почти тождественны.
Если элементов всего в природе - около 100, то изотопов - более 2000. Многие из них неустойчивы, то есть радиоактивны, и распадаются, испуская различные виды излучений.
Изотопы одного и того же элемента по составу отличаются лишь количеством нейтронов в ядре.


Изотопы водорода.

Если удалить пространство из всех атомов человеческого тела, то то, что останется, сможет пролезть в игольное ушко.


Любознательным

«Глиссирующие» автомобили

Если, двигаясь на автомобиле по мокрой дороге с большой скоростью, резко затормозить, то автомобиль поведет себя как глиссер; шины его начнут скользить по тонкой пленке воды, практически не касаясь дороги. Почему это происходит? Почему автомобиль не всегда скользит на мокрой дороге, даже если тормоз не нажат? Существует ли такой рисунок протектора, который уменьшает этот эффект?

Оказывается...
Предлагалось несколько рисунков протектора, уменьшающего вероятность «аквапланирования». Например, канавка может отводить воду к задней точке контакта протектора с дорогой, откуда вода будет выбрасываться наружу. По другим, более мелким канавкам вода может отводиться в стороны. Наконец, небольшие углубления на протекторе могут как бы «промокать» водяной слой на дороге, прикасаясь к нему непосредственно перед зоной основного контакта протектора с дорожным покрытием. Во всех случаях задача состоит в том, чтобы как можно скорее убрать воду из зоны контакта и не допустить аквапланирования.