Как разложить квадратный трехчлен на линейные множители. Разложение квадратного трёхчлена на множители

Квадратным трехчленом называют трехчлен вида a*x 2 +b*x+c, где a,b,c некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не должно равняться нулю.

Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Корнем квадратного трехчлена a*x 2 +b*x+c называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 +b*x+c обращается в нуль.

Для того, чтобы найти корни квадратного трехчлена необходимо решить квадратное уравнение вида a*x 2 +b*x+c=0.

Как найти корни квадратного трехчлена

Для решения можно использовать один из известных способов.

  • 1 способ.

Нахождение корней квадратного трехчлена по формуле.

1. Найти значение дискриминанта по формуле D =b 2 -4*a*c.

2. В зависимости от значения дискриминанта вычислить корни по формулам:

Если D > 0, то квадратный трехчлен имеет два корня.

x = -b±√D / 2*a

Если D < 0, то квадратный трехчлен имеет один корень.

Если дискриминант отрицателен, то квадратный трехчлен не имеет корней.

  • 2 способ.

Нахождение корней квадратного трехчлена выделением полного квадрата. Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение, уравнение у которого на старший коэффициент равен единице.

Найдем корни квадратного трехчлена x 2 +2*x-3. Для этого решим следующее квадратное уравнение: x 2 +2*x-3=0;

Преобразуем это уравнение:

В левой части уравнения стоит многочлен x 2 +2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:

(x 2 +2*x+1) -1=3

То, что в скобках можно представить в виде квадрата двучлена

Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.

В первом случае получаем ответ х=1, а во втором, х=-3.

Ответ: х=1, х=-3.

В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.

Квадратный трехчлен ax 2 +bx+c можно разложить на линейные множители по формуле:

ax 2 +bx+c=a (x-x 1)(x-x 2) , где x 1, x 2 — корни квадратного уравнения ax 2 +bx+c=0.

Разложить квадратный трехчлен на линейные множители:

Пример 1). 2x 2 -7x-15.

Решение. 2x 2 -7x-15=0.

a =2; b =-7; c =-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D .

D=b 2 -4ac=(-7) 2 -4∙2∙(-15)=49+120=169=13 2 >0; 2 действительных корня.

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

2x 2 -7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x 2 -7x-15 2х+3 и х-5.

Ответ: 2x 2 -7x-15=(2х+3)(х-5).

Пример 2). 3x 2 +2x-8 .

Решение. Найдем корни квадратного уравнения:

a =3; b =2; c =-8. Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b =2). Находим дискриминант D 1 .

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

Мы представили трехчлен 3x 2 +2x-8 в виде произведения двучленов х+2 и 3х-4 .

Ответ: 3x 2 +2x-8=(х+2) (3х-4) .

Пример 3) . 5x 2 -3x-2.

Решение. Найдем корни квадратного уравнения:

a =5; b =-3; c =-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, а второй корень равен частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

5x 2 -3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x 2 -3x-2 в виде произведения двучленов х-1 и 5х+2.

Ответ: 5x 2 -3x-2=(х-1) (5х+2).

Пример 4). 6x 2 +x-5.

Решение. Найдем корни квадратного уравнения:

a =6; b =1; c =-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минус единице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

Мы представили трехчлен 6x 2 +x-5 в виде произведения двучленов х+1 и 6х-5 .

Ответ: 6x 2 +x-5=(х+1) (6х-5) .

Пример 5). x 2 -13x+12.

Решение. Найдем корни приведенного квадратного уравнения:

x 2 -13x+12=0. Проверим, можно ли применить . Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.

a =1; b =-13; c =12. Находим дискриминант D.

D=b 2 -4ac =13 2 -4∙1∙12=169-48=121=11 2 .

Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:

x 1 +x 2 =13; x 1 ∙x 2 =12. Очевидно, что x 1 =1; x 2 =12.

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

x 2 -13x+12=(х-1)(х-12).

Ответ: x 2 -13x+12=(х-1) (х-12) .

Пример 6). x 2 -4x-6.

Решение. Найдем корни приведенного квадратного уравнения:

a =1; b =-4; c =-6. Второй коэффициент — четное число. Находим дискриминант D 1 .

Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2) и запишем ответ.

Тип урока: урок закрепления и систематизации знаний.

Вид урока: Проверка, оценка и коррекция знаний и способов действий.

Цели:

  • Образовательные:
– выработать у учащихся умение раскладывать квадратный трехчлен на множители;
– закрепление знаний в процессе решения различных заданий по указанной теме;
– формирование математического мышления;
– повысить интерес к предмету в процессе повторения пройденного материала.
  • Воспитательные:
  • – воспитание организованности, сосредоточенности;
    – воспитание положительного отношения к учебе;
    – воспитание любознательности.
  • Развивающие:
  • – развивать умение осуществлять самоконтроль;
    – развивать умение рационально планировать работу;
    – развитие самостоятельности, внимания.

    Оборудование: дидактический материал для устной работы, самостоятельной работы, тестовые задания для проверки знаний, карточки с домашним заданием, учебник по алгебре Ю.Н. Макарычева.

    План урока.

    Этапы урока Время, мин Приемы и методы
    I. Этап актуализации знаний. Мотивация учебной проблемы 2 Беседа учителя
    II. Основное содержание урока. Формирование и закрепление у учащихся представления о формуле разложения квадратного трехчлена на множители. 10 Объяснение учителя. Эвристическая беседа
    III. Формирование умений и навыков. Закрепление изученного материала 25 Решение задач.
    Ответы на вопросы учащихся
    IV. Проверка усвоения знаний. Рефлексия 5 Сообщение учителя.
    Сообщение учащихся
    V. Домашнее задание 3 Задание на карточках

    Ход урока

    I. Этап актуализации знаний. Мотивация учебной проблемы.

    Организационный момент.

    Сегодня на уроке мы проведем обобщение и систематизацию знаний по теме: “Разложение квадратного трехчлена на множители”. Выполняя различные упражнения, вы должны отметить для себя моменты, на которые вам необходимо уделить особое внимание при решении уравнений и практических задач. Это очень важно при подготовке к экзамену.
    Запишите тему урока: “Разложение квадратного трехчлена на множители. Решение примеров”.

    II. Основное содержание урока. Формирование и закрепление у учащихся представления о формуле разложения квадратного трехчлена на множители.

    Устная работа.

    – Для успешного разложения квадратного трехчлена на множители нужно помнить как формулы нахождения дискриминанта и формулы нахождения корней квадратного уравнения, формулу разложения квадратного трехчлена на множители и применять их на практике.

    1. Посмотрите на карточки “Продолжите или дополните утверждение”.

    2. Посмотрите на доску.

    1. Какой из предложенных многочленов не является квадратным?

    1) х 2 – 4х + 3 = 0;
    2) – 2х 2 +х – 3 = 0;
    3) х 4 – 2х 3 + 2 = 0;
    4) 3 – 2х 2 + 2 = 0;

    Дайте определение квадратного трехчлена. Дайте определение корня квадратного трехчлена.

    2. Какая из формул не является формулой для вычисления корней квадратного уравнения?

    1) х 1,2 = ;
    2) х 1,2 = b + ;
    3) х 1,2 = .

    3. Найти коэффициенты а, b, с квадратного трехчлена – 2х 2 + 5х + 7

    1) – 2; 5; 7;
    2) 5; – 2; 7;
    3) 2; 7; 5.

    4. Какая из формул является формулой для вычисления корней квадратного уравнения

    x 2 + px+ q = 0 по теореме Виета?

    1) x 1 + x 2 = p ,
    x
    1 · x 2 = q .

    2) x 1 + x 2 = p ,
    x
    1 · x 2 = q .

    3) x 1 + x 2 = p ,
    x
    1 · x 2 = – q .

    5. Разложить квадратный трехчлен х 2 – 11х + 18 на множители.

    Ответ: (х – 2)(х – 9)

    6. Разложить квадратный трехчлен у 2 – 9у + 20 на множители

    Ответ: (х – 4)(х – 5)

    III. Формирование умений и навыков. Закрепление изученного материала.

    1. Разложите на множители квадратный трехчлен:
    а) 3x 2 – 8x + 2;
    б) 6x 2 – 5x + 1;
    в) 3x 2 + 5x – 2;
    г) -5x 2 + 6x – 1.

    2. Разложение на множители помогает нам при сокращении дробей.

    3. Не используя формулу корней, найдите корни квадратного трехчлена:
    а) x 2 + 3x + 2 = 0;
    б) x 2 – 9x + 20 = 0.

    4. Составьте квадратный трехчлен, корнями которого являются числа:
    а) x 1 = 4; x 2 = 2;
    б) x 1 = 3; x 2 = -6;

    Самостоятельная работа.

    Самостоятельно по вариантам выполнить задание с последующей проверкой. На первые два задания необходимо дать ответ “Да” или “нет”. Вызываются по одному ученику от каждого варианта (они работают на отворотах доски). После того как самостоятельная работа выполнена на доске, проводится совместная проверка решения. Учащиеся оценивают свои работы.

    1-й вариант:

    1. D<0. Уравнение имеет 2 корня.

    2. Число 2 является корнем уравнения х 2 + 3х – 10 = 0.

    3. Разложить квадратный трехчлен на множители 6x 2 – 5x + 1;

    2-й вариант:

    1. D>0. Уравнение имеет 2 корня.

    2.Число 3 является корнем квадратного уравнения х 2 – х – 12 = 0.

    3.Разложить квадратный трехчлен на множители 2х 2 – 5х + 3

    IV. Проверка усвоения знаний. Рефлексия.

    – Урок показал, что вы знаете основной теоретический материал этой темы. Мы обобщили знания

    Пример 1.1


    x 4 + x 3 - 6 x 2 .

    Решение

    Выносим x 2 за скобки:
    .
    2 + x - 6 = 0 :
    .
    Корни уравнения:
    , .


    .

    Ответ

    Пример 1.2

    Разложить на множители многочлен третьей степени:
    x 3 + 6 x 2 + 9 x .

    Решение

    Выносим x за скобки:
    .
    Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
    Его дискриминант: .
    Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
    .

    Отсюда получаем разложение многочлена на множители:
    .

    Ответ

    Пример 1.3

    Разложить на множители многочлен пятой степени:
    x 5 - 2 x 4 + 10 x 3 .

    Решение

    Выносим x 3 за скобки:
    .
    Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
    Его дискриминант: .
    Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
    , .

    Разложение многочлена на множители имеет вид:
    .

    Если нас интересует разложение на множители с действительными коэффициентами, то:
    .

    Ответ

    Примеры разложения многочленов на множители с помощью формул

    Примеры с биквадратными многочленами

    Пример 2.1

    Разложить биквадратный многочлен на множители:
    x 4 + x 2 - 20 .

    Решение

    Применим формулы:
    a 2 + 2 ab + b 2 = (a + b) 2 ;
    a 2 - b 2 = (a - b)(a + b) .

    ;
    .

    Ответ

    Пример 2.2

    Разложить на множители многочлен, сводящийся к биквадратному:
    x 8 + x 4 + 1 .

    Решение

    Применим формулы:
    a 2 + 2 ab + b 2 = (a + b) 2 ;
    a 2 - b 2 = (a - b)(a + b) :

    ;

    ;
    .

    Ответ

    Пример 2.3 с возвратным многочленом

    Разложить на множители возвратный многочлен:
    .

    Решение

    Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
    .
    Делаем подстановку:
    , ;
    ;


    ;
    .

    Ответ

    Примеры разложения многочленов на множители с целыми корнями

    Пример 3.1

    Разложить многочлен на множители:
    .

    Решение

    Предположим, что уравнение

    6
    -6, -3, -2, -1, 1, 2, 3, 6 .
    (-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
    (-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
    (-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
    (-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
    1 3 - 6·1 2 + 11·1 - 6 = 0 ;
    2 3 - 6·2 2 + 11·2 - 6 = 0 ;
    3 3 - 6·3 2 + 11·3 - 6 = 0 ;
    6 3 - 6·6 2 + 11·6 - 6 = 60 .

    Итак, мы нашли три корня:
    x 1 = 1 , x 2 = 2 , x 3 = 3 .
    Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
    .

    Ответ

    Пример 3.2

    Разложить многочлен на множители:
    .

    Решение

    Предположим, что уравнение

    имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
    -2, -1, 1, 2 .
    Подставляем поочередно эти значения:
    (-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
    (-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
    1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
    2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
    Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
    1, 2, -1, -2 .
    Подставим x = -1 :
    .

    Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
    .

    Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.

    Калькулятор онлайн.
    Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

    Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
    \(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

    Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

    Программа не только даёт ответ задачи, но и отображает процесс решения.

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

    Правила ввода квадратного многочлена

    В качестве переменной может выступать любая латинсая буква.
    Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

    Числа можно вводить целые или дробные.
    Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

    Правила ввода десятичных дробей.
    В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
    Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

    Правила ввода обыкновенных дробей.
    В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

    Знаменатель не может быть отрицательным.

    При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
    Целая часть отделяется от дроби знаком амперсанд: &
    Ввод: 3&1/3 - 5&6/5x +1/7x^2
    Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

    При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
    Например: 1/2(x-1)(x+1)-(5x-10&1/2)

    Пример подробного решения

    Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
    $$ 2\left(x^2+x-2 \right) = $$
    $$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

    Решить

    Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
    Возможно у вас включен AdBlock.
    В этом случае отключите его и обновите страницу.

    У вас в браузере отключено выполнение JavaScript.
    Чтобы решение появилось нужно включить JavaScript.
    Вот инструкции, как включить JavaScript в вашем браузере .

    Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
    Через несколько секунд решение появится ниже.
    Пожалуйста подождите сек...


    Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
    Не забудте указать какую задачу вы решаете и что вводите в поля .



    Наши игры, головоломки, эмуляторы:

    Немного теории.

    Выделение квадрата двучлена из квадратного трехчлена

    Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

    Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


    \(2x^2+12x+14 = 2(x^2+6x+7) \)


    Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
    $$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

    Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
    $$ 2x^2+12x+14 = 2(x+3)^2-4 $$

    Разложение на множители квадратного трехчлена

    Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

    Покажем на примере как это преобразование делается.

    Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

    Вынесем за скобки коэффициент a, т.е. 2:
    \(2x^2+4x-6 = 2(x^2+2x-3) \)

    Преобразуем выражение в скобках.
    Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
    $$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
    $$ = 2(x-1)(x+3) $$

    Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
    $$ 2x^2+4x-6 = 2(x-1)(x+3) $$

    Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
    Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

    Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач