Жесткая вода и способы ее умягчения химия. Умягчение воды: что это и для чего нужно. Реагентное умягчение воды

Технологические схемы и конструктивные элементы установок реагентного умягчения воды

Термохимический метод умягчения воды

Умягчение воды диализом

Магнитная обработка воды

Литература

Теоретические основы умягчения воды, классификация методов

Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. кальция и магния. В соответствии с ГОСТ 2874-82 "Вода питьевая" жесткость воды не должна превышать 7 мг-экв/л. Отдельные виды производств к технологической воде предъявляют требования глубокого ее умягчения, т.е. до 0,05.0,01 мг-экв/л. Обычно используемые водоисточники имеют жесткость, отвечающую нормам хозяйственно-питьевых вод, и в умягчении не нуждаются. Умягчение воды производят в основном при ее подготовке для технических целей. Так, жесткость воды для питания барабанных котлов не должна превышать 0,005 мг-экв/л. Умягчение воды осуществляют методами: термическим, основанным на нагревании воды, ее дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Ca ( II ) и Mg ( II ) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na ( I) или Н (1) на ионы Са (II) и Mg ( II ), содержащиеся в воде диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями. В соответствии с рекомендациями СНиПа при умягчении подземных вод следует применять ионообменные методы; при умягчении поверхностных вод, когда одновременно требуется и осветление воды, - известковый или известково-содовый метод, а при глубоком умягчении воды - последующее катионирование. Основные характеристики и условия применения методов умягчения воды приведены в табл. 20.1.

умягчение вода диализ термический

Для получения воды для хозяйственно-питьевых нужд обычно умягчают лишь ее некоторую часть с последующим смешением с исходной водой, при этом количество умягчаемой воды Q y определяют по формуле

(20.1)

где Ж о. и. - общая жесткость исходной воды, мг-экв/л; Ж 0. с. - общая жесткость воды, поступающей в сеть, мг-экв/л; Ж 0. у. - жесткость умягченной воды, мг-экв/л.

Методы умягчення воды

Показатель термический реагентный ионообменный диализа
Характеристика процесса Воду нагревают до температуры выше 100°С, при этом удаляется карбонатная и некарбонатная жесткости (в виде карбоната кальция, гидрокси-. да магния и гипса) В воду добавляют известь, устраняющую карбонатную и магниевую жесткость, а также соду, устраняющую некарбонат - иую жесткость Умягчаемая вода пропускается через катионито - вые фильтры Исходная вода фильтруется через полупроницаемую мембрану
Назначение метода Устранение карбонатной жесткости из воды, употребляемой для питания котлов низкого н среднего давления Неглубокое умягчение при одновременном осветлении воды от взвешенных веществ Глубокое умягчение воды, содержащей незначительное количество взвешенных веществ Глубокое умягчение воды
Расход воды на собственные нужды - Не более 10% До 30% и более пропорционально жесткости исходной воды 10
Условия эффективного применения: мутность исходной воды, мг/л До 50 До 500 Не более 8 До 2,0
Жесткость воды, мг-экв/л Карбонатная жесткость с преобладанием Са (НС03) 2, некарбонатная жесткость в виде гипса 5.30 Не выше 15 До 10,0
Остаточная жесткость воды, мг-экв/л Карбонатная жесткость до 0,035, CaS04 до 0,70 До 0,70 0,03.0,05 прн одноступенчатом и до 0,01 при двухступенчатом ка - тионировании 0,01 и ниже
Температура воды,°С До 270 До 90 До 30 (глауконит), до 60 (сульфоугли) До 60

Термический метод умягчения воды

Термический метод умягчения воды целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при ее нагревании в сторону образования карбоната кальция, что описывается реакцией

Са (НС0 3) 2 - > СаСО 3 + С0 2 + Н 2 0.

Равновесие смещается за счет понижения растворимости оксида углерода (IV), вызываемого повышением температуры и давления. Кипячением можно полностью удалить оксид углерода (IV) и тем самым значительно снизить карбонатную кальциевую жесткость. Однако, полностью устранить указанную жесткость не удается, поскольку карбонат кальция хотя и незначительно (13 мг/л при температуре 18°С), но все же растворим в воде.

При наличии в воде гидрокарбоната магния процесс его осаждения происходит следующим образом: вначале образуется сравнительно хорошо растворимый (110 мг/л при температуре 18° С) карбонат магния

Mg (НСО 3) → MgC0 3 + С0 2 + Н 2 0,

который при продолжительном кипячении гидролизуется, в результате чего выпадает осадок малорастворимого (8,4 мг/л). гидроксида магния

MgC0 3 +H 2 0 → Mg (0H) 2 +C0 2 .

Следовательно, при кипячении воды жесткость, обусловливаемая гидрокарбонатами кальция и магния, снижается. При кипячении воды снижается также жесткость, определяемая сульфатом кальция, растворимость которого падает до 0,65 г/л.

На рис. 1 показан термоумягчитель конструкции Копьева, отличающийся относительной простотой устройства и надежностью работы. Предварительно подогретая в аппарате обрабатываемая вода поступает через эжектор на розетку пленочного подогревателя и разбрызгивается над вертикально размещенными трубами, и по ним стекает вниз навстречу горячему пару. Затем совместно с продувочной водой от котлов она по центрально подающей трубе через дырчатое днище поступает в осветлитель со взвешенным осадком.

Выделяющиеся при этом из воды углекислота и кислород вместе с избытком пара сбрасываются в атмосферу. Образующиеся в процессе нагревания воды соли кальция и магния задерживаются во взвешенном слое. Пройдя через взвешенный слой, умягченная вода поступает в сборник и отводится за пределы аппарата.

Время пребывания воды в термоумягчителе составляет 30.45 мин, скорость ее восходящего движения во взвешенном слое 7.10 м/ч, а в отверстиях ложного дна 0,1.0,25 м/с.

Рис. 1. Термоумягчитель конструкции Копьева.

15 - сброс дренажной воды; 12 - центральная подающая труба; 13 - ложные перфорированные днища; 11 - взвешенный слой; 14 - сброс шлама; 9 - сборник умягченной воды; 1, 10 - подача исходной и отвод умягченной воды; 2 - продувка котлов; 3 - эжектор; 4 - выпар; 5 - пленочный подогреватель; 6 - сброс пара; 7 - кольцевой перфорированный трубопровод отвода воды к эжектору; 8 - наклонные сепарирующие перегородки

Реагентные методы умягчения воды

Умягчение воды реагентными методами основано на обработке ее реагентами, образующими с кальцием и магнием малорастворимые соединения: Mg (OH) 2 , СаС0 3 , Са 3 (Р0 4) 2 , Mg 3 (P0 4) 2 и другие с последующим их отделением в осветлителях, тонкослойных отстойниках и осветлительных фильтрах. В качестве реагентов используют известь, кальцинированную соду, гидроксиды натрия и бария и другие вещества.

Умягчение воды известкованием применяют при ее высокой карбонатной и низкой некарботаной жесткости, а также в случае, когда не требуется удалять из воды соли некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде раствора или суспензии (молока) в предварительно подогретую обрабатываемую воду. Растворяясь, известь обогащает воду ионами ОН - и Са 2+ , что приводит к связыванию растворенного в воде свободного оксида углерода (IV) с образованием карбонатных ионов и переходу гидрокарбонатных ионов в карбонатные:

С0 2 + 20Н - → СО 3 + Н 2 0,НСО 3 - + ОН - → СО 3 - + Н 2 О.

Повышение в обрабатываемой воде концентрации ионов С0 3 2 - и присутствие в ней ионов Са 2+ с учетом введенных с известью приводит к повышению произведения растворимости и осаждению малорастворимого карбоната кальция:

Са 2+ + С0 3 - → СаС0 3 .

При избытке извести в осадок выпадает и гидроксид магния

Mg 2+ + 20Н - → Mg (ОН) 2

Для ускорения удаления дисперсных и коллоидных примесей и снижения щелочности воды одновременно с известкованием применяют коагуляцию этих примесей сульфатом железа (II) т.е. FeS0 4 *7 Н 2 0. Остаточная жесткость умягченной воды при декарбонизации может быть получена на 0,4.0,8 мг-экв/л больше некарбонатной жесткости, а щелочность 0,8.1,2 мг-экв/л. Доза извести определяется соотношением концентрации в воде ионов кальция и карбонатной жесткости: а) при соотношении [Са 2+ ] /20<Ж к,

(20.2б)

б) при соотношении [Са 2+ ] /20 > Ж к,

(20.3)

где [СО 2 ] - концентрация в воде свободного оксида углерода (IV), мг/л; [Са 2+ ] - концентрация ионов кальция, мг/л; Ж к - карбонатная жесткость воды, мг-экв/л; Д к - доза коагулянта (FeS0 4 или FeCl 3 в пересчете на безводные продукты), мг/л; е к - эквивалентная масса активного вещества коагулянта, мг/мг-экв (для FeS0 4 е к = 76, для FeCl 3 е к = 54); 0,5 и 0,3 - избыток извести для обеспечения большей полноты реакции, мг-экв/л.

Многие слышали об умягчении жесткой воды и стараются обязательно заказать себе для водоподготовки умягчитель.Так ли это важно и нужно?

Физиологическая норма жесткости указана в СанПиНе 2.1.4.1116-02 на бутылированную воду и составляет от 1,5 до 3,5 ммоль/л. Для бытовой техники требуется еще более мягкая воды, чтобы не образовывалась накипь.

Различают два вида жёсткости:
Карбонатная (временная) - называют потому, что она устраняется кипячением.
Некарбонатную (постоянную) - называют потому, что при кипячении жёсткость не устраняется, но при выпаривании на стенках сосуда образуется в виде накипи светло-белый малорастворимый осадок типа сульфата кальция или магния.Соли MgCl2, CaCl2, MgSO4, содержащиеся в воде с постоянной жёсткостью, вызывают коррозию стальных конструкций и ускоряют износ водонагревательного и отопительного оборудования.При использовании для водона-гревательного оборудования и отопительной техники жёсткой воды образуется накипь из карбонатов кальция и магния, гипса и других солей.Образование накипи затрудняет нагревание воды, вызывает увеличение расхода электричества и топлива.

В жёсткой воде плохо развариваются мясо, овощи, крупа, плохо заваривается чай. При стирке тканей (как и при мытье головы) образующиеся нерастворимые соединения осаждаются на поверхности нитей и постепенно разрушают волокна.

Умягчение воды - процесс удаления из неё катионов жёсткости, т.е. кальция и магния.

Термический метод основан на нагревании воды до температуры выше точки кипения, её дистилляцией или вымораживанием с целью устранения карбоната кальция и карбоната магния. Вследствие применения указанного метода остаточная жёсткость воды составляет не более 0,7 ммоль/л. Поэтому термический метод применяется для технических нужд, в частности при использовании вод,идущих на питание котлов низкого давления, а также в сочетании с реагентными методами.

При умягчении воды реагентными методами используют реагенты, образующие при взаимодействии с кальцием и магнием малорастворимые соединения с последующим их отделением в осветителях, тонкослойных отстойниках и осветительных фильтрах. В качестве реагентов-осадителей используют известь, кальцинированную соду, гидрооксиды натрия и бария и другие вещества. Выбор реагентов зависит от качества исходной воды и условий её дальнейшего применения. При применении реагентных методов остаточная жёсткость воды составит до 0,7 мг/л. В соответствии с рекомендациями «Строительных норм и правил» (СН и П) реагентные методы в основном используются для умягчения поверхностных вод, когда одновременно требуется и осветление воды.

Умягчение воды основанное на разных скоростях диффузии этих веществ через полупроницаемую мембрану , разделяющую концентрированный и разбавленный растворы. Умягчение воды методом диализа осуществляется в мембранных аппаратах с нитро- и ацетатцеллюлозными плёночными мембранами. В результате применения данного метода остаточная жёсткость воды составит до 0,01 мг/л и ниже. Отрицательной стороной метода диализа является высокая себестоимость мембранных аппаратов.

Магнитная обработка воды - распространена для борьбы с образованием накипи. Сущность метода состоит в том, что при пересечение водой магнитных силовых линий образователи накипи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки (шлам) удаляют при продувке.

Наибольшее практическое применение получил ионообменный метод умягчения воды. Сущность ионообменного метода заключается в способности ионообменных материалов (ионитов) поглощать из воды положительные или отрица-тельные ионы в обмен на эквивалентное количество ионов ионита. В зависимости от состава существуют минеральные и органические катиониты, которые, в свою очередь, разделяются на вещества естественного и искусственного происхождения. В технологии подготовки воды широко применяют органические катиониты искусственного происхождения, так называемые ионообменные смолы. Качество ионообменных смол характеризуется их физическими свойствами, химической и термической стойкостью, рабочей ёмкостью и др.В установках умягчения воды использует ионообменные смолы, основанные на применении катионита в Na-форме и анионита в Cl-форме, т.е. использует метод натрий - хлор-ионирования. Указанный метод состоит из следующих стадий: натрий-катионирования и хлор-катионирования. На стадии натрий-катионирования происходит замещение ионов кальция и магния, придающих воде жёсткость, на ионы натрия.

В результате обрабатываемая вода умягчается, а кальций и магний образуют нерастворимый полимер. При пропуске натрий-катионированной воды через хлор-аноион протекают реакции обмена анионов, содержащихся в Na- катионированной воде, на ионы хлора и щёлочность обрабатываемой воды снижается. Для восстановления свойств ионообменной смолы (регенерации) используется раствор поваренной соли. Таким образом, достигается глубокое умягчение воды (до 0,03 … 0,05 ммоль/л). При применении метода натрий - хлор-ионирования расходуется только один реагент - поваренная соль, не требуется антикоррозийной защиты оборудования, трубопроводов и специальной арматуры, уменьшается количество оборудования, упрощается контроль работы и эксплуатации водоумягчительной установки. В результате повышается надёжность и уменьшается стоимость установки для умягчения воды. Только пить постоянно такую умягченную

На своем участке — выкопали колодец или пробурили скважину для хозяйственно-бытовых нужд дома.

И столкнулись с такой проблемой:

  • белые следы на сантехнике,
  • накипь в чайнике,
  • ощущение сухости кожи,
  • жесткие волосы после мытья
  • на электронагревательных приборах образуется известковая корка
Данный анализ воды я взял с форума forumhouse из ветки https://www.forumhouse.ru/threads/251194/

Анализ воды, который Вы сделали в химической лаборатории показал: очень жесткая вода! >25мг/л.экв и/или высокая общая минерализация воды, сухой остаток более 1500мг/л .

Фирмы предлагают Вам дорогущие методы очистки ионообменными смолами без гарантии… Вы получаете примерно такие такие письма в ответ на свой запрос об очистке воды:

«Здравствуйте.
в связи с многократным превышением ПДК по жесткости, а так же по солесодержанию и сульфатам, Комплекс водоподготовки с монтажом обойдется от 300 тыс. рублей, в противном случае гарантию на качество очищенной воды не даем . Если Вы готовы на такие расходы- пришлем предложение.»

Для удаления солей жесткости можно умягчать воду с помощью , либо синтетического , но во-первых, максимальное количество солей жесткости,с которыми можно справиться умягчителем не более 15 мг/л экв., во-вторых общую минерализацию воды снизить умягчителем не получится, ведь умягчение — это не удаление, а замещение одних ионов на другие.

Стоимость умягчителя для стандартного удаления солей жесткости начинается от 23 000р с хорошей . Для подбора умягчителя присылайте анализ на почту [email protected] — я предложу Вам подходящий вариант.

Что делать, если умягчитель бесполезен, а система обратного осмоса на весь дом слишком дорогая (>2000$)? С такой водой жить тяжело, потому что она оставляет бело-рыжие наросты на сантехнике, которые невозможно вывести, очень быстро засоряется солями жесткости боилер, нагревательная спираль стиралки и посудомойки, а что творится в чайнике — лучше не смотреть!!!

Особая проблема с такой водой встает перед фермерами, садоводами, разводчиками рыбы, ведь такая вода непригодна для кормления скота и полива растений, подпитки пруда. А воды этой нужно очень много.

В случае высокой общей минерализации воды умягчитель не поможет и остается только два способа:

  • дорогой обратный осмос,
  • дешевый, но требующий регулярного приложения рук процесс химической очистки воды от солей жесткости — известково-содовым методом.

Заключается известково-содовый метод в растворении небольшого количества реагента в накопительной емкости с водой, выпадает осадок, воду забираем на очистку, осадок сливаем в дренаж.

Известково-содовый метод умягчения воды:

В емкость общим объемом, скажем, 1 куб набираем воду.

Рассказать друзьям

Высокий уровень жесткости провоцирует образование накипи, ухудшает эффективность моющих средств. В таких неблагоприятных условиях возрастает риск повреждения функциональных компонентов отопительного оборудования, иной техники. Увеличиваются эксплуатационные расходы, затраты на выполнение санитарно-гигиенических правил.

Современные производители предлагают разные способы умягчения воды и соответствующие комплекты оборудования. Выбрать оптимальный вариант будет не сложно после ознакомления с данной публикацией. Здесь есть полезные данные, которые помогут недорого и быстро реализовать проект.

Основные определения

Общий уровень жесткости определяется, как сумма постоянной и временной компоненты. Как правило, первая часть имеет небольшое практическое значение, поэтому ее можно исключить из обзора. Вторая определяется концентрацией катионов магния и кальция. Эти химические вещества при нагреве преобразуются в нерастворимый осадок – накипь.

Именно они засоряют технические протоки, что сопровождается ухудшением производительности котлов. Такие образования отличаются пористостью, низкой теплопроводностью. При накоплении на поверхности ТЭНа этот слой блокирует нормальный отвод тепла. Если не применить эффективный способ умягчения жесткой воды, стиральная машина или другая техника с нагревательным элементом будет выведена из строя из-за накипи.

На практике решают вопросы уменьшения уровня жесткости, либо полное устранение вредных явлений. Второй вариант лучше! Он предполагает надежную защиту дорогих изделий, эффективную профилактику с предотвращением аварийных ситуаций.

Способ 1: Нагрев

Принцип действия этих способов умягчения воды понятен из общего определения. Каждый человек знает, что при кипячении (нагреве) на стенках чайника активно формируется слой накипи. После завершения процедуры жесткость будет снижена.

Теоретическая простота способа является единственным преимуществом. Детальное изучение вопроса позволяет выявить следующие недостатки:

  • длительность процесса;
  • небольшое количество жидкости, которое можно обработать в бытовых условиях;
  • значительные затраты на электроэнергию, газ, другие виды топлива.

Следует не забывать, что на финишном этапе приходится удалять прочную накипь. Это – трудоемкие рабочие операции, которые способны испортить рабочую емкость.

Способ 2: Обработка электромагнитным полем

Из приведенных описаний можно сделать промежуточный вывод. Для удаления вредных соединений с применением химических средств, ионным обменом, кипячением и мембранной фильтрацией приходится решать сложные инженерные задачи. Об этом будет написано ниже. Соответствующим образом увеличиваются затраты. Полифосфатные соединения действуют эффективнее. Они стоят недорого, но надежно блокируют негативный процесс. Метод можно признать идеальным, если бы не загрязнение жидкости.

В технологии электромагнитной обработки нет перечисленных недостатков. Воздействие сильным полем изменяет форму частиц накипи. Созданные игольчатые выступы не позволяют им соединятся в крупные фракции. Этим блокируется процесс образования накипи.

Чтобы получить поле оптимальной мощности и конфигурации применяют высокочастотный генератор электромагнитных колебаний. Он работает по специальному алгоритму, который не вызывает эффект «привыкания». Снижение положительного воздействия наблюдается при работе с постоянными магнитами.

В ходе изучения актуальных предложений рынка следует обратить внимание на современные качественные модели устройств электромагнитной обработки воды:

  • выполняют свои функции с минимальным потреблением электроэнергии (5-20 Вт/час).
  • Катушку создают из нескольких витков провода. Прибор включают в сеть. Дополнительная настройка не нужна.
  • Дальность действия достигает 2 км, чего достаточно для защиты объекта в целом.
  • Долговечность устройств превышает 20 лет.

В любом случае надо выбирать производителя, который обладает солидным опытом в профильной области деятельности!

Химические способы умягчения воды

Хорошо известная профильным специалистам методика – добавление в раствор гашеной извести. Химические реакции связывают молекулы кальция и магния с последующим образованием нерастворимого осадка. По мере накопления на дне рабочего резервуара его удаляют. Мелкие взвешенные частицы задерживают через фосфатный способ. Аналогичную технологию применяют для снижения некарбонатной составляющей с помощью соды.

Главным недостатком этого и других способов данной категории является загрязнение жидкости химикатами. Чтобы такая обработка была безопасной, приходится точно соблюдать оптимальные дозировки, тщательно контролировать все важные этапы. Качественное воспроизведение технологии в домашних условиях не представляется возможным без чрезмерных трудностей и затрат. Ее используют на муниципальных и коллективных станциях водоподготовки профессиональной категории.

Впрочем, одна «химическая» методика стала популярной именно в быту. Исследователи обнаружили, что полифосфатные соединения образуют оболочки вокруг мельчайших нерастворимых фракций. Они препятствуют объединению в крупные частицы, присоединению к стенкам труб и внешним поверхностям нагревательных приборов.

Этим полезным свойством пользуются производители фосфатных стиральных порошков. Также применяют специализированные проточные емкости, в которые помещают полифосфатные соли. Устройства монтируют на входном патрубке перед котлами и стиральными машинами. Способ не подходит для приготовления питьевой воды.

Фильтрация

Нужный эффект можно получить, если уменьшить размеры ячеек до величины молекул. Такие микроскопические протоки создают в мембранах обратного осмоса. Они способны пропускать только чистую воду. Загрязненная жидкость скапливается перед преградой, удаляется в дренаж.

Задача решена? Не следует делать поспешные выводы. Методика фильтрации действительно хороша, но только для обработки 180-220 литров/сутки. Такова производительность серийных с разумной стоимостью. Этого количества не хватит для однократного приема душа, удовлетворения других бытовых потребностей.

Чтобы увеличить производительность несколько мембран устанавливают параллельно. Для функционирования комплекта приходится поднимать давление специальной насосной станцией. Подобное оборудование для фильтрации воды стоит дорого, занимает много места.

Умягчение воды ионообменным способом

Снижают первичные и эксплуатационные расходы с помощью техники этой категории. Применяют особую засыпку, которая задерживает ионы кальция и магния. Одновременно происходит заполнение жидкости безвредными соединениями натрия.

Преимущества приведены в следующем списке:

  • Кроме солоноватого привкуса не меняются в худшую сторону исходные характеристики воды.
  • После обработки определенного количества жидкости полезные функции засыпки восстанавливают промывкой и регенерацией.
  • Эти процедуры выполняются неоднократно в автоматическом режиме, без тщательного контроля и вмешательства со стороны пользователя.
  • При соблюдении правил эксплуатации засыпка из смол сохраняет работоспособность более шести лет.

Необходимо подчеркнуть доступность регенерационной смеси. Это – недорогой раствор обычной поваренной соли (хорошей очистки).

Как и ранее, приведем нюансы, которые заслуживают упоминания для полноценного анализа умягчения воды ионообменным способом:

  • Ионообменный способ умягчения воды прерывает снабжение объекта при регенерации (длительность более часа). Чтобы устранить такой недостаток устанавливают параллельно две функциональные емкости.
  • Комплект с высокой производительностью для семьи из 2-3 человек занимает несколько кв. метров площади.
  • Работа издает сильный шум в процессе промывки, поэтому нужна эффективная звуковая изоляция помещения.
  • Каждое существенное изменение уровня жесткости необходимо корректировать ручной настройкой.
  • Хорошо оснащенный набор с блоком автоматики и несколькими рабочими баками стоит дорого.

Ультразвуковое воздействие

Обработку колебаниями соответствующего диапазона частот применяют для снижения уровня жесткости. Одновременно разрушается слой старой накипи, что пригодится для очистки труб без агрессивных химических соединений.

Ультразвук с профессиональными предосторожностями применяют для очистки и защиты промышленного оборудования. Крупные элементы этих конструкций и резьбовые соединения обладают лучшей устойчивостью к сильным вибрационным воздействиям.

Какие способы умягчения воды подходят для разных объектов недвижимости?

Оптимальную методику выбирают с учетом реальных условий будущей эксплуатации. Опытные специалисты советуют создавать общий проект с механическими и другими фильтрами для точного согласования всех функциональных компонентов.

В городской квартире можно рассчитывать на поддержание приемлемого качества жесткой воды. Соответствующие обязательства указаны в договоре со снабжающей организацией. Однако в домашних условиях не исключены аварии на магистральных трассах, броски давления. Для защиты от этих негативных воздействий на входе устанавливают фосфатный или механический фильтр с регулятором напора и контрольными манометрами. Надо подчеркнуть преимущества электромагнитного преобразователя с учетом особенностей объектов данной категории:

  • компактность;
  • небольшой вес;
  • отсутствие шумов;
  • симпатичный внешний вид.

Для автономного загородного водоснабжения расчетливые собственники предпочитают пользоваться артезианской скважиной. Такой источник обеспечивает высокую степень очистки природной фильтрацией. Но на большой глубине увеличивается концентрация примесей, вымытых из горных пород. Среди них – соединения солей в достаточно большой концентрации.

В частном доме проще найти свободное место для технологического оборудования. Здесь можно устанавливать комплекты для умягчения воды ионообменным способом. В помещение проводят необходимые инженерные сети. Надо не забывать о хорошей изоляции. Необходимо поддерживать установленный производителем температурный режим. Следует удалить хлорные и другие химические соединения, способные повредить действующую засыпку.

Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. Са и Мg. Умягчение воды осуществляется следующими методами:

1) термическое умягчение, основанное на нагревании воды, ее дистилляции или вымораживанием;

2) реагентное, в котором находящиеся в воде ионы жесткости, связывают различными реагентами в практически нерастворимые соединения;

3) ионным обменом, основанным на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы натрия или водорода на катионы кальция и магния;

4) диализ;

5) комбинированный, представляющий различные сочетания перечисленных методов.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями.

Термический метод умягчения воды.

Целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при нагревании воды в сторону образования карбоната кальция

Са(НСО 3) 2 → СаСО 3 ↓+СО 2 + Н 2 О

Равновесие смещается за счет понижения растворимости СО 2 , вызываемого повышением температуры и давления. Кипячением можно полностью удалить СО 2 и тем самым значительно снизить карбонатную жесткость. Кроме того, снижается жесткость, определяемая сульфатом кальция. Однако, полностью удалить указанную жесткость не удается, поскольку карбонат кальция все же растворим в воде (18 мг/л). Применяется для этого метода – термоумягчитель. Время пребывания воды в нем 30-45 минут.

Реагентные методы умягчения.

Основаны на обработке воды реагентами, образующими с кальцием и магнием малорастворимые соединения Мg(ОН) 2 , СаСО 3 , Са 3 (РО 4) 2 и другие, с последующим их отделением в осветлителях. В качестве реагентов используется известь, кальцинированная сода, гидроксиды натрия, бария и другие вещества.

Умягчение воды известкованием применяют при высокой карбонатной и низкой некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде суспензии в предварительно подогретую воду. Растворяясь, известь обогащает воду ОН - и Са +2 ионами, что приводит к связыванию растворимого в воде СО 2 с образованием СО 3 -2 и переходу НСО 3 в СО 2 .

СО 2 + 2 ОН - →СО 3 -2 + Н 2 О; НСО3 - +ОН - → СО 3 –2 + Н 2 О

Повышение в обрабатываемой воде концентрации СО 3 –2 и присутствие в ней ионовСа +2 с учетом введенных с известью, приводит к осаждению СаСО 3

Са +2 + СО 3 –2 → СаСО 3 ↓.

Для ускорения процесса одновременно с известкованием применяют коагулирование.

Дозу извести определяют по формуле:

Д и = 28([СО 2 ] /22 +2 Ж к - [ Са +2 ]/20 +Д к /е к + 0.5)

Д к – доза коагулянта, е –эквивалентная масса активного вещества коагулянта,

Выражение Д к /е к – берут со знаком -, если коагулянт вводится ранее извести и +, если совместно или после.

Более глубокое умягчение воды может быть достигнуто ее подогревом, добавлением избытка реагента - осадителя и созданием контакта умягчаемой воды с ранее образовавшимся осадком.

Фосфатирование применяют для доумягчения воды. Остаточная жесткость снижается до 0.02-0.03 мг*экв /л. Фосфатированием достигается также большая стабильность воды, снижение ее коррозионного действия на металлические трубопроводы и предупреждаются отложения карбонатов на внутренней поверхности стенок труб. В качестве фосфатирующего реагента используется гексаметафосфат натрия, триполифосфат натрия. Фосфатный метод умягчения при использовании тринатрийфосфата является наиболее эффективным реагентным методом. Химизм процесса описывается уравнением:

3Са(НСО 3) 2 /3 Мg(НСО 3) 2 + 2 Nа 3 РО 4 = Са 3 (РО 4) 2 / Мg 3 (РО 4) 2 +6 NаНСО 3 .

Фосфатное умягчение осуществляется при подогреве воды до 105 –150 0 С. Образующиеся осадки Са 3 (РО 4) 2 и Мg 3 (РО 4) 2 хорошо адсорбируют их умягченной воды коллоиды и кремниевую кислоту, поэтому этот метод применяется для подготовки питательной воды для котлов среднего и высокого давления.

Умягчение воды диализом.

Диализ – метод разделения растворенных веществ, значительно отличающихся молекулярными массами. Он основан на разных скоростях диффузии этих веществ через полупроницаемую мембрану, разделяющую концентрированные и разбавленные растворы. Диализ осуществляется в мембранных аппаратах с нитро - и ацетатцеллюлозными мембранами. Эффективность полупроницаемой мембраны определяется высокими значениями селективности и водопроницаемости, которые она должна сохранять в течение продолжительного времени работы.

Магнитная обработка воды.

В настоящее время для борьбы с накипеобразованием и инкрустацией успешно применяют магнитную обработку воды. Ее суть заключается в действии магнитного поля на ионы солей, растворимых в воде. Под влиянием магнитного поля происходит поляризация и деформация ионов, сопровождающееся уменьшением их гидратации, повышающей вероятность их сближения и образование центров кристаллизации. Сущность метода состоит в том, что при пересечении водой магнитных силовых линий, накипеобразователи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки удаляют при продувке.

Умягчение воды катионированием.

Сущность ионного обмена заключается в способности ионитов поглощать из воды положительные и отрицательные ионы в обмен на эквивалентное количество ионов ионита. Процесс водообработки методом ионного обмена, в результате которого происходит обмен катионов – называют катионированием.

Катиониты в воде разбухают, увеличиваются в объеме. Энергия вхождения в катионит различных катионов по величине их динамической активности может быть охарактеризована следующим рядом:

Nа < NН 4+ < К + < Мg +2 < Са +2 < Аl +3

Е р = (Q* Ж и)/(а *h к), где Ж и – жесткость воды; Q – количество умягченной воды, м 3 ;

а – площадь катионитового фильтра, м 2 ; h к – высота слоя катионита, м.

Длительность работы фильтра определяется по формуле:

Т к = Е р * h к /V к *Ж и. где V к – скорость фильтрования воды.

В технике подготовки воды применяют органические катиониты. Они содержат функциональные химические активные группы, Н + которых способны замещаться другими катионами: четвертичные амины NН 3 ОН, сульфогруппы НSО 3 , карбоксильные группы СООН. Группа НSО 3 обладает сильнокислотными, а СООН – слабокислотными свойствами. В зависимости от содержания функциональных групп катиониты делят на слабокислотные и сильнокислотные. Сильнокислотные обменивают катионы в щелочной, нейтральной и кислой среде, слабокислотные – только в щелочной среде. Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, рабочей обменной емкостью. Фракционный состав характеризует эксплуатационные свойства катионита. Рабочая обменная емкость зависит от вида извлекаемых катионов, соотношения солей в умягченной воде, рН, высоты слоя катионита, объема фильтра, режима эксплуатации, удельного расхода регенерирующего реагента.

Натрийкатионирование.

Этот метод применяется для умягчения воды с содержанием взвешенных веществ н/б 8 мг/л и цветности н/б 30 0 .Жесткость воды снижается при одноступенчатом катионировании до 0.05 –0.1, при двухступенчатом – до 0.01 мг*экв /л. Процесс натрийкатионирования описывается следующими уравнениями:

2 Nа[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2 NаНСО 3

2 Nа[К] + СаСl 2 / Мg Сl 2 ↔Са[К] 2 / Мg[К] 2 + 2 NаСl, где [К] – нерастворимая матрица полимера.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать.

Процесс умягчения воды на катионитовых фильтрах состоит из следующих операций:

Фильтрование воды через слой катионита до момента достижения предельно допустимой жесткости в фильтрате;

Взрыхление слоя катионита восходящим потоком воды;

Спуска водяной подушки во избежание разбавления регенерационного раствора;

Регенерация катионита посредством фильтрования соответствующего раствора;

Отмывка катионита.

Выбор метода диктуется требованиями, предъявляемыми к умягченной воде, Свойствами исходной воды и технико-экономическими соображениями. Регенерация осуществляется 5% раствором хлористого натрия в количестве 1.2 м 3 раствора на 1 м 3 смолы, затем остаточное количество в виде 8% раствора. Процесс регенерации описывается следующей реакцией:

Са[К] 2 / Мg[К] 2 + 2 NаСl↔2 Nа[К] + СаСl 2 / Мg Сl 2

Хлористый натрий применяется из-за его доступности, дешевизны, а также вследствие того, что получают при этом хорошо растворимые соли СаСl 2 и МgСl 2 , легко удаляемые с регенерационным раствором и водой.

Водород-натрийкатионитовое умягчение воды.

Обработка воды Н-катионированием основана на фильтрации ее через слой катионита, содержащего в качестве обменных ионов водород.

2 Н[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2Н 2 О +СО 2

2 Н[К] + NаСl↔2 Nа[К] + НСl; 2 Н[К] +Nа 2 SО 4 ↔2 Nа[К] +Н 2 SО 4

При Н-катионировании воды значительно снижается ее рН из –за кислот, образующихся в фильтрате. Выделяющийся при Н-катионировании СО2 можно удалить дегазацией и в растворе останутся минеральные кислоты в количествах, эквивалентных содержанию SО 4 -2 и Сl - в исходной воде. Из приведенных реакций видно, что щелочность воды в процессе ионного обмена не изменяется. Следовательно, пропорционально смешивая кислый фильтрат после Н-катионитовых фильтров со щелочным фильтратом после Nа – катионитовых фильтров можно получить умягченную воду с различной щелочностью. В этом заключается сущность и преимущества Н- Nа – катионирования. Применяют параллельное, последовательное и смешанное Н- Nа – катионирования. При параллельном – 1 часть воды идет через Nа – катионитовый фильтр, другая – через Н-катионитовый. Образующиеся воды смешивают в таких пропорциях, чтобы щелочность не превышала 0.4 мг*экв/л. При последовательном – часть воды пропускают через Н-катионитовый, затем смешивают с остальной водой и подают на Nа – катионитовый фильтр. Это позволяет полнее использовать обменную емкость Н-катионита и снизить расход кислоты на регенерацию. Смешанное катионирование осуществляется в одном фильтре, загруженном вверху - Н-катионитом, внизу - Nа – катионитом.