Процесс присоединения воды к различным ионам, молекулам. Состояние воды в растении Что называется интенсивностью транспирации

Читайте также:
  1. Sp2-Гибридизованное состояние свойственно атому, если сумма числа связанных с ним атомов и числа его неподеленных электронных пар равна 3 (примеры).
  2. ВВП и ВНП: понятие, методы расчета. Сложности расчета. Чистое экономическое благосостояние. ЧНП, НД, ЛД, ЛРД. Номинальный и реальный ВВП. Понятие дефлятора. Индексы цен.
  3. Влияние макроэкономической политики на состояние платежного баланса.
  4. Влияние научно-технического прогресса, демографического взрыва, урбанизации на состояние СО и процесс жизнедеятельности человека.
  5. Влияние современных тенденций развития общества на состояние здоровья человека.
  6. Воздействие управляющее - сознательное действие субъекта управления по отношению к объекту управления с целью перевода его в новое желательное состояние.
  7. Вопрос 1. Понятие права социального обеспечения, его функции, современное состояние, формы

В среднем вода составляет 80-90% массы растения. Однако ее содержание меняется и в значительной степени зависит от видовых особенностей, ткани и органа, возраста, функциональной активности, факторов внешней среды.

Таблица 1 - Содержание воды в разных органах растения

Основные функции воды в растениях:

1) Объединяет все части организма, образуя непрерывную водную фазу;

2) Образует раствор и среду для реакций метаболизма;

3) Принимает участие в различных процессах как вещество реакции

6СО 2 + 6Н 2 О→С 6 Н 12 О 6 + 6О 2

4) Обеспечивает передвижение веществ по сосудам растения, по симпласту и апопласту;

5) Защищает ткани растений от резких колебаний температуры (благодаря высокой теплоемкости и большой удельной теплоте парообразования);

6) Обеспечивает упругость тканей и органов, выполняет роль амортизатора при механических воздействиях;

7) Поддерживает структуру органических молекул, мембран, цитоплазмы, клеточной стенки и других компартментов клетки.

Функции воды обусловлены особыми физико-химическими свойствами и строением молекулы. Молекула воды полярная и представляет из себя диполь (Н δ+ - О δ-). Геометрия молекулы отвечает дважды незавершенному тетраэдру. Такая геометрическая форма вызывает разделение в пространстве «центров тяжести» отрицательного и положительного зарядов и образования диполя молекулы воды.

Рисунок 3. Проекция на плоскости Рисунок 4. Условное изображение молекулы воды

Вода является растворителем. Благодаря полярной природе вода обладает способностью взаимодействовать с ионами и другими полярными соединениями и смешивать их с молекулами растворителя (воды). Неполярные соединения в воде не растворяются, а образуют с водой поверхности раздела. В живых организмах на поверхностях раздела протекают многие химические реакции.

Связанная вода – имеет измененные физические свойства главным образом в результате взаимодействия с неводными компонентами. Условно принимают под связанной водой ту, которая не замерзает при понижении температуры до – 10°С.



Связанная вода в растениях бывает:

1) Осмотически- связанная

2) Коллоидно-связанная

3) Капиллярно-связанная

Осмотически-связанная вода – связана с ионами или низкомолекулярными веществами. Вода гидратирует растворенные вещества – ионы, молекулы. Вода электростатически связывается и образует мономолекулярный слой первичной гидратации. Вакуолярный сок содержит сахара, органические кислоты и их соли, неорганические катионы и анионы. Эти вещества удерживают воду осмотически.

Коллоидно-связанная вода – включает воду, которая находится внутри коллоидной системы и воду, которая находится на поверхности коллоидов и между ними, а также иммобилизованную воду. Иммобилизация представляет собой механический захват воды при конформационных изменениях макромолекул или их комплексов, при этом вода оказывается заключенной в замкнутом пространстве макромолекулы. Значительное количество коллоидно-связанной воды находится на поверхности фибрилл клеточной стенки, а также в биоколлоидах цитоплазмы и матриксе мембранных структур клетки

коллоидным частицам называется..?

1. Карбоксилирование

2. Гипоксия

3. Гидратация

4. Осцилляция

16. Для возникновения осмотического давления система должна содержать:

1. Полупроницаемую мембрану

2. Проницаемую мембрану

3. Раствор с непроникающими через мембрану молекулами

4. Раствор с проникающими через мембрану молекулами

5. Растворитель с проникающими через мембрану молекулами

17. В межфибриллярных полостях клеточной оболочки содержится процентов всей клеточной воды..?.

4. более 50

18. Благодаря высокой … воды растение может поглощать значительное количество тепла без больших колебаний температуры ткани.

1. Теплоемкости

2. Теплопроводности

3. Когезии

4. Теплоте парообразования

19. Что называется интенсивностью транспирации?

9. Количество воды в граммах, израсходованное на накопление растением 1 грамма сухого вещества.

10. Количество органической массы в граммах, создаваемой при транспирационном расходе 1 кг воды.

11. Отношение транспирации к физическому испарению.

12. Количество воды, испаренное растением в единицу времени с единицы площади г/м 2 ч.

20. Что собой представляют мезофиты?

4. Водные растения постоянно живущие в воде.

5. Растения требующие много воды: растут на влажных почвах (например многие лесные растения).

21. Вода имеет максимальную плотность при … градусах С.

22. Для растений в почве недоступными являются … вода?

1. Гигроскопическая

2. Химически связанная

3. Имбибиционная

4. Грвитационная

5. Капилярная

23. Вода составляет в среднем …. % от массы растения.

24. Что собой представляют галофиты?

1. Растения приспосабливающиеся к жизни в засушливых условиях.

2. Растения приспосабливающиеся к жизни в умеренных климатических зонах.

3. Растения способные произрастать на засоленных почвах.

4. Растения постоянно живущие в воде.

5. Растения требующие много воды: растут на влажных почвах (например: многие лесные растения).

25 Что собой представляет гуттация?

1. Выделение водного раствора (сока пасоки) под влиянием корневого давления при повреждении или перерезании стебля. Наблюдается у всех сосудистых растений. (слабо выражен у хвойных).

2. Способность растений выделять воду в виде капель, из специальных во- дяных устьиц, гидатод расположенных на листьях.

3. Обмен растворенных частичек между двумя средами

26. Что собой представляют гидрофиты?

1. Растения, приспосабливающиеся к жизни в засушливых условиях.

2. Растения, приспосабливающиеся к жизни в умеренных климатических зонах.

3. Растения способные произрастать на засоленных почвах.

4. Водные растения, постоянно живущие в воде.

5. Растения, требующие много воды: растут на влажных почвах (например: многие лесные растения).

27. Семена растений в воздушно-сухом состоянии содержат … % воды.

28. Выпадение 100 кубометров воды на 1 га соответствует …

Лекция 2. Вода в растениях.

Вода является составной частью как самих растений, так и их плодов и семян. В живом растении вода составляет до 95% от массы его. Но это совсем мало, по сравнению с тем, сколько расходует растение, пока вырастет и даст урожай.
Потребность в воде, у различных растений, для того, чтобы осуществить свой цикл развития, например, для условий Узбекистана, только на испарение (транспирацию) самими растениями и испарение с поверхности почвы в сравнении с наземной массой, в сотни раз больше, чем вес воды, содержащейся во взрослом растении и его плодах.

Зачем же растениям нужна эта вода?

Какую функцию она выполняет?

Зачем так много воды надо растениям?

Ну начнём с того, что растения "хотят" не только пить, но и есть. Значит нужно как-то доставлять по стволам и веткам к листьям питательные элементы. Эти питательные элементы, засосанные корнями вместе с почвенной влагой, предварительно подготовленные в корнях в виде полуфабрикатов, доставляются по сосудам к листьям - фабрикам органических веществ.
Испаряя воду листьями, растение охлаждает их, не давая перегреться, получают из воздуха углекислый газ (в обмен на испаряемую воду), служащий материалом для создания всех органических веществ, идущих на построение всего растения.

Рисунок 2.1. Схема "функционирования" растения.
(заимствовано из книги "Жизнь зелёного растения".
А Гэлстон, П.Девис, Р.Сэттер).

Учёные, изучавшие досконально потребности растений в воде, были в значительной мере обескуражены непостоянством, так называемых транспирационных коэффициентов, показывающих отношение затрат воды на производство единицы веса сухой растительной массы даже у одних и тех же растений, (не говоря об их различии у влаголюбивой и засухоустойчивой растительности).
В зависимости от условий произрастания затраты воды на единицу урожая колеблются очень сильно. Замечено, что когда почвы бедны питательными элементами, то растение испаряет воды больше, чем на богатых оными.

Растения, имеющие в своём распоряжении много доступной для них влаги хорошего качества, "с удовольствием" её расходуют, буйно развивая вегетативную массу, но не "торопятся" плодоносить. В таких случаях говорят, что растения "жируют".

Растения, находящиеся в условиях ограниченных запасов влаги, "ведут себя сдержаннее". Они тратят меньше влаги, развивают умеренную вегетативную массу и быстрее вступают в фазы цветения и плодообразования.

А вот растения, сильно ущемлённые в воде, не только не развивают вегетативной массы и не дают плодов, но и могут просто погибнуть.

Растениям, которые обычно выращиваются на наших полях при существующих системах обработки почвы , не способны ходить глубоко за водой, как дикорастущие (и даже как культурные) растения пустыни на почвах нетронутых человеком.

Для нас важно обеспечить условия, чтобы получать устойчивые урожаи не только в годы с нормальными осадками, но и в засушливые. Поэтому все действия земледельца, способствующие накоплению и сохранению влаги в корнеобитаемом слое почвы, сторицей вознаграждаются растениями.

Почти у всех растений критической фазой развития (когда засуха оказывает наиболее вредное влияние на них) является период цветения и завязывания плодов. Что касается развития многолетних трав, используемых на корм животных в свежем виде или в виде сена, то у них наиболее уязвимыми, в отношении влаги, являются послеукосные периоды.

В эти критические периоды, желательно, чтобы влажность корнеобитаемого слоя почвы не опускалась ниже определённых пределов, которые не так просто определить даже с использованием научных понятий, но мы всё же, попробуем.

Несмотря на то, что многие процессы снабжения растений водой очень похожи в разных климатических зонах, все же, в зависимости от свойств почвы, свойств почвообразующих пород, наличия почвенного увлажнения грунтовыми водами, степени их солёности, уклонов местности, имеются большие различия и в способах сохранения почвенной влаги и в способах её пополнения.

Общая сезонная потребность растений в воде и особенности разных фаз их развития.

То, что потребные размеры орошения напрямую связаны с климатом, наверное ни у кого сомнения не вызывает…
Давайте по порядку, начнём с вопроса - сколько надо подать воды на поле, и в какие сроки, чтобы получить ожидаемый урожай. Прежде всего, посмотрим на рис. 2.1, где изображены среднемесячные климатические характеристики пустынной зоны Узбекистана. (В агроклиматических справочниках Вы всегда сможете найти эти характеристики для своей местности, а испаряемость (Eo) с водной поверхности - рассчитать по несложной формуле, если не найдёте её в готовом виде в том же справочнике).


Рис. 2.1. Климатические характеристики и дефицит водного баланса.
t - температура воздуха, в градусах Цельсия;
а - относительная влажность воздуха в %;
Ос - атмосферные осадки, мм.
Ео - испаряемость с водной поверхности, Ео = 0,00144 * (25 - t)2 * (100 - a) ;
Д = Ео - Ос - дефицит водного баланса (на рисунке закрашено жёлтым цветом в период вегетации).

На этом рисунке показан ход среднемесячных температур воздуха, количество атмосферных осадков, относительной влажности воздуха, вычисленные показатели испаряемости и дефицитов влажности. Площадь фигуры, залитая желтым - это дефициты вегетационного периода (в данном случае IV…IX месяцев). Но у каждой культуры свои сроки посева, свой вегетационный период, а поэтому и потребность в воде для поливов будет зависеть от этих величин и обусловит свой поливной период. То есть, растения скороспелые могут потребовать воды для завершения своего сезонного цикла развития значительно меньше, чем поздние, однако это относится в основном не к многолетним, древесно-кустарниковым растениям, которые потребляют влагу весь вегетационный период.

Хотя дефициты влаги - это ещё не сама потребность, но, во всяком случае, вычисленные помесячные дефициты влаги, дают ориентировочное представление в какие месяцы и насколько испаряемость превышает осадки, что немало для того, чтобы понять, насколько нужно орошение, или без него можно обойтись.

Учёные установили, что для расчета суммарного водопотребления можно пользоваться эмпирическими уравнениями, связывающими дефицит влаги с фактическими расходами влаги орошаемой культурой, (если определить коэффициенты, позволяющие найти соответствие между этими показателями).
Одна из самых простых зависимостей выглядит так:

Мвег = 10 * Кк * Д

(2.1)


Где Мвег - оросительная норма вегетационного периода рассматриваемой культуры, м3/га;
Кк - эмпирический коэффициент культуры, зависящий и от вида растений, применяемой агротехники и вегетационного периода;
Д - суммарный дефицит влаги за вегетационный период выращиваемой культуры, мм.

На рис. 2.2, как пример, показаны фазы развития хлопчатника, сроки начала вегетации, сроки начала поливного периода, доля физического (с поверхности почвы) испарения для центрального климатического пояса Узбекистана.


Рис. 2.2, Характерные периоды (фазы развития) для хлопчатника для центрального климатического пояса Узбекистана.

Для того, чтобы установить значение коэффициента Кк, учёные ведут многолетние опыты с разными вариантами поливных режимов и сопоставляют полученные урожаи с затратами воды, а далее, эти затраты сопоставляют с фактическими дефицитами влаги. Эти работы обеспечивают им (учёным) пожизненную занятость, ибо со временем меняются и сорта растений, и применяемая агротехника, и способы полива, да и климат, как известно, не постоянен…, так что можно изучать долго, можно сказать, - бесконечно долго. Для примера на рисунке 2.3 мы приведём результаты обобщения материалов изучения режимов орошения хлопчатника, примерно за лет 70. Сюда вошли результаты ~ 270 опытов, проводившихся более чем на 13 опытных станциях Узбекистана. Эта культура долгие годы была самой нужной, и по ней в Средней Азии больше всего проводилось исследований, ну, примерно раз в десять больше, чем по люцерне, пшенице и кукурузе!

Рассмотрим внимательно три графика на рис 2.3. Поясним немного суть графиков. Здесь У - урожай на какой-либо делянке из данного опыта, а Умах - это максимальный урожай на делянке, лучше всех обеспеченной водой в данном опыте. Все сравниваемые результаты по делянкам в каждом опыте, в каждый год исследования были получены при одних и тех же погодных условиях, но для каждой из делянок в опыте значения отношения поливной нормы к дефициту влаги за вегетацию (М/Д) было разным и урожай должен был зависеть только от объёма поливной воды.
Однако на рисунках видно, что урожай, близкий к максимальному (У/Умах = 1) бывает в разных опытах при отношении оросительной нормы к дефициту влаги за вегетационный период от 0,15, до 1.2, то есть разница почти десятикратная! И почему так, нам совершенно непонятно, поскольку из каждой, описанной в трудах учёных, серии опытов мы специально отбирали результаты только тех, где был одинаковый "фон ", а менялась только оросительная норма. И этот диапазон разброса данных почти одинаков, как при близких, так и при глубоких грунтовых водах! Ещё следует отметить, что максимальные урожаи в выбранных нами для анализа опытах не встречались, практически, ниже 45...50 ц/га, и в основном эти наинизшие показатели были характерны для северных районов Узбекистана.
Можно предположить, что, урожай, наверное, зависит не только от "фона" и объёма поданной на полив воды, но ещё связан с искусством земледельца? А может быть от своевременности проведенных поливов? Как Вы думаете? Во всяком случае, этот богатейший материал ждёт своих исследователей и аналитиков...

Но нам пока ничего не остаётся делать, как ориентироваться на "золотую середину" опытных "облаков" данных и принимать, в данном случае тот самый коэффициент в формуле 2.1 -
Кк = М/Д = 0,4…0,65 (м еньшие значения для близких грунтовых вод, а большие - для глубоких). Тем не менее, для ориентировки и это уже не так плохо. Зная по метеоданным дефицит за время вегетационного периода, можно, умножив его на коэффициент Кк, получить примерную потребность в оросительной воде. Для средних широт степной зоны Узбекистана суммарный дефицит составляет за вегетацию (IV…IX месяцы) около 1000 мм. Тогда оросительная норма составит от 400 до 650 мм, или в переводе на м3/га - 4000…6500 м3/га.
Примерно столько же требуется кукурузе на зерно, а зерновым достаточно в полтора раза меньше, то есть, 3000…4500 м3/га. Следует отметить, что часть этой потребности может покрываться запасами влаги за невегетационный период, если они могут быть сохранены в почве правильной агротехникой.


Рисунок 2.3. Фактические данные по затратам воды для хлопчатника, полученные в опытах разных учёных. На верхнем рисунке собраны данные, полученные при близких грунтовых водах, на среднем - данные для переходных условий между близкими и глубокими грунтовыми водами, а на нижнем - при грунтовых водах ниже 3 м.
(Точки над линией У/Умах = 1 условные, они просто показывают количество опытов, использовавшееся при оценке того или иного отношения М/Д и построения графиков).


Пока мы говорили о среднемноголетних показателях климата, но в природе год на год не приходится, есть засушливые годы, а есть очень дождливые. Естественно, что поливать в дождливый год незачем, а вот в засушливый - очень нужно. Поэтому оборудование для орошения будет использоваться только в отдельные засушливые годы. Но в некоторых условиях стабильность продуктивности сельскохозяйственного производства по годам, может оказаться важнее некоторых лишних издержек на организацию орошения.
Дальше мы (в лекции 9) немного расскажем, на что ещё тратится вода на оросительных системах, чтобы поддерживать нормальное развитие выращиваемых растений на полях, и "мало не покажется"!
Ниже, в таблице 3.1 для примера приведены значения коэффициентов Кк для разных культур в Узбекистане из работы, в которой был обобщён огромный опыт многих учёных Средней Азии (Расчётные значения оросительных норм сельскохозяйственных культур в бассейнах рек Сырдарьи и Амударьи. Составители: В.Р.Шредер, В.Ф.Сафонов и др.). "Снимая шляпу" перед большим учёным - моим наставником В.Р Шредером, являвшимся идеологом этого гигантского труда, я специально предварительно ознакомил вас с данными, в основном использованными при её составлении, для того, чтобы вы критически относились ко всяким не своим выводам и на слово никому не доверяли.

Таблица 2.1. Значения коэффициентов Кк для разных культур по климатическим зонам Узбекистана.

Культура

По климатическим зонам

С-1

С-2

Ц-1

Ц-2

Ю-1

Ю-2

Хлопчатник

0,60

0,63

0,65

0,68

0,70

Люцерна и другие травы

0,77

0,81

0,84

0,88

0,92

0,95

Сады и др.насаждения

0,53

0,55

0,58

0,60

0,62

0,65

Виноградники

0,44

0,46

0,48

0,50

0,52

0,54

Кукуруза и сорго на зерно

0,62

0,61

0,62

0,59

0,58

0,57

Пропашные культуры с повторными

0,66

20. Полное давление дыхания у растений приводит к …

1) гибели растения

21. У большинства растений преобладает …

1) на свету – фотосинтез, в темноте – дыхание

22. Механические раздражители вызывают _______________ дыхания.

1) стимуляцию

23. Поглощение воды сухими семенами растений вызывают _______________ интенсивности дыхания.

1) увеличение

24. В условиях засухи интенсивность дыхания клеток листа растений …

1) увеличивается

25. В условиях засухи эффективность дыхания клеток листа растений …

1) уменьшается

26. У растений, произрастающих на тяжелых и влажных почвах, происходит …

1) активация гликолиза и подавление аэробного дыхания

27. Зависимость дыхательных процессов у растения от соотношения количества АТФ и АДФ называется …

1) дыхательным контролем

28. Увеличение интенсивности дыхания _______ величину биологического урожая

1) уменьшает

29. Усиление дыхания _________________ обмен веществ у растения.

1) ускоряет

30. Представленный на рисунке опыт показывает …

1) необходимость воздуха для дыхания корней

31. Назовите цифру, которой на рисунке обозначены воздушные корни …

32. Назовите цифру, которой на рисунке обозначены дыхательные корни …

33. Назовите цифру, которой на рисунке обозначены ходульные корни …

34. Назовите цифру, которой на рисунке обозначены втягивающие корни …

35. Интенсивность дыхания прорастающих семян составляет _______ мг /г. ч.

36. Дыхательный коэффициент прорастающих семян пшеницы равен …

37. Дыхательный коэффициент прорастающих семян подсолнечника равен …

38. Дыхательный коэффициент меристемы _______ единицы.

1) значительно больше

39. Температурный оптимум дыхания составляет _______ градусов.

40. Критическая влажность семян масличных культур равна ______ %.

41. Критическая влажность семян зерновых культур равна ______%.

42. Значительно возрастает интенсивность дыхания при созревании сочных плодов …

43. Для биосинтеза аминокислот дыхание поставляет …

1) кетокислоты

ВОДНЫЙ ОБМЕН РАСТЕНИЙ

Водный обмен растительной клетки

1. Валентные связи атомов водорода и кислорода в молекуле воды расположены под углом ________ градусов.

2. Водородная связь имеет энергию __________ кДж/моль.

3. Благодаря высокой ____________ воды растение может поглощать значительные количества тепла без больших колебаний температуры ткани.

1) теплоемкости

4. В межфибриллярных полостях клеточной оболочки содержится ___ процентов всей клеточной воды.

5. Благодаря высокой __________ молекул воды она разъединяет анионы и катионы.

1) полярности

6. Вода имеет высокую плотность при ______ градусах С.

7. Вода составляет в среднем _________ % сырой массы растения.

8. Семена растений в воздушно-сухом состоянии содержат ___ % воды.

9. Около ________ % содержащейся в растении воды принимает участие в биохимических превращениях.

10. Диффузия молекул растворителя через полупроницаемую мембрану в сторону раствора большей концентрации, называется.

1) осмосом

11. Молекулы воды в живых тканях ….

1) образуют кластеры с упорядоченной структурой

12. Эффективное передвижение минеральных веществ и продуктов фотосинтеза по сосудам растений обеспечивает высокая ________ воды.

1) растворяющая способность

13. Максимальное количество внутренней энергии молекул воды, которое может быть превращено в работу называется …

1) химическим потенциалом

14. Молекулы воды двигаются в сторону более низкого …

1) водного потенциала

15. Давление протопласта на клеточную стенку называется …

1) тургорное давление

16. Осмотическое давление будет равно тургорному при …

1) полном насыщении клетки водой

17. Давление клеточной стенки на протопласт называется …

1) тургорное натяжение

18. При полном насыщении клетки водой осмотическое давление будет …

1) равно тургорному по величине и противоположно по знаку

19. Давление, обусловливающее приток воды в вакуоль, называется …

1) сосущая сила

20. Если растительную клетку поместить в гипотонический раствор содержание воды в ней …

1) увеличивается

21. Больше всего воды в растительной клетке находится в …

1) вакуоли

22. Процесс диффузии воды в раствор, отделенный от нее полупроницаемой мембраной, которая пропускает только молекулы воды, называется …

1) осмосом

23. Силу, с которой вода поступает в клетку растения, называют …

1) сосущей

24. Вода, находящаяся в клетке в свободном состоянии, …

1) обладает высокой подвижностью

25. Вода в растительной клетке может иметь структуру, за счет возникновения _____________ между ее молекулами.

1) водородных связей

26. Давление протопласта на клеточную стенку называется …

1) тургорным

27. Явление потери тургора клетками растения в гипертонической среде называется …

1) плазмолизом

28. Одной из функций воды у растений называется …

1) регуляция температуры тканей

29. Одной из важнейших функций воды у растений является …

1) создание среды для протекания всех процессов метаболизма

30. Вода, связанная молекулами биополимеров клетки растения, называется...

1) коллоидно-связанной

31. Вода, связанная с ионами и низкомолекулярными соединениями клетки растения, называется …

1) осмотически-связанной

32. Разность между свободной энергией воды внутри и вне клетки при той же температуре и атмосферном давлении называется ____________ клетки.

1) водным потенциалом

33. У растения осмотически активными веществами являются …

1) органические кислоты

34. У растения осмотически неактивными веществами являются …

1) ксантофилы

35. Минимальное количество воды, при котором растение способно поддерживать постоянство своей внутренней среды, называется …

1) гомеостатическим

36. Разность между содержанием воды при максимальном насыщении ею тканей растения и ее содержанием в данный момент называется …

1) водным дефицитом

37. Скорость химических реакций и интенсивность физиологических процессов у растения зависит в первую очередь от содержания _________ воды.

1) свободной

38. Осмотическое поступление воды в растительную клетку в основном определяется содержанием осмотически активных веществ в …

1) вакуоле

39. Если растительную клетку поместить в изотонический раствор содержание воды в ней …

1) не изменится

40. Если растительную клетку поместить в гипертонический раствор содержание воды в ней …

1) уменьшится

41. Ассосиации молекул воды образуются за счет _______ связей.

1) водородных

43. За счет набухания коллоидов поглощают воду в основном …

44. Вода, находящаяся внутри макромолекулы или между молекулами, называется …

1) иммобилизованный

45. Свободное вытекание клеточного сока из промороженного клубня картофеля объясняется …

1) нарушением мембранных структур клеток

46. Осмос – это …

1) транспорт воды через мембрану по градиенту активности

47. Гидрофильные свойства клетки обеспечивают …

48. Вода обеспечивает поддержание теплового баланса растения за счет высокой (ого) …

1) теплоемкости

49. Вода обеспечивает транспорт веществ в растении за счет высокой (ого) …

1) растворяющей способности

1) водного

51. Максимальную способность вакуолизированной клетки поглощать воду характеризует _______________ потенциал.

1) осмотический

52. Степень насыщенности клетки водой характеризует ________ потенциал.

1) гидростатический

53. Способность клеток поглощать воду за счет набухания коллоидов характеризует __________ потенциал.

1) матричный

Поступление и передвижение воды по растению

1. Вода, находящаяся в почве в доступном для растений состоянии, называется…

1) гравитационная

2. Вода, находящаяся в почве в доступном для растений состоянии, называется…

1) капиллярная

3. Передвижение воды по капиллярам обусловлено ее …

1) высоким поверхностным натяжением

4. Длина корневых волосков в среднем равна _________ миллиметров.

5. Главным осмотическим пространством зрелых растительных клеток является …

1) вакуоль

6. Основная водопоглащающая часть корня – это зона …

1) корневых волосков

7. Корневые волоски в среднем живут ___________ дней.

8. В продукты фотосинтеза включаются ________ % прошедшей через растение воды.

9. Значительную долю воды за счет набухания коллоидов поглоща(ет)ют …

10. Плазмолиз в клетке вызывает ___________ раствор.

1) гипертонический

11. Наибольшее сопротивление току жидкой воды в растении оказывает …

1) корневая система

12. Общая поверхность корней превышает поверхность надземных органов в среднем в ____________ раз.

13. О наличии корневого давления в растениях свидетельствует …

1) плач растений

14. Плазмолиз можно использовать для определения _________ клеточного сока.

1) осмотического давления

15. Величину осмотического потенциала клетки в основном определяет …

1) концентрация вакуолярного сока

16. В растительной ткани движение воды …

1) направлено от клеток с более высоким водным потенциалом к клеткам с меньшим водным потенциалом

17. Давление, развиваемое корневой системой при подаче воды в надземные органы называется ______________ давлением.

1) корневым

18. Механизм, создающий корневое давление называется _________ двигателем воды.

1) нижним концевым

19. Факторы, тормозящие дыхание корней, ___________ величину корневого давления.

1) снижают

20. Основной водопроводящей тканью сосудистых растений является …

1) ксилема

21. У растения вода поглощается из почвы преимущественно клетками зон _____________ корня.

1) растяжения и корневых волосков

22. После дождя водный потенциал почвы ______ и корни растения легко поглощают воду.

1) увеличивается

23. Работа нижнего концевого двигателя водного тока у растения обеспечивается …

1) корневым давлением

24. Вода по стеблю растений транспортируется в виде …

1) непрерывных водных нитей

25. Поглощение воды корнем сопровождается __________ свободной энергии растительной системы.

1) снижением

26. Положительный гидротропизм – это рост корня в сторону_________ участков почвы.

1) влажных

27. Силу, поднимающую пасоку вверх по сосудам растения, называют …

1) корневым давлением

28. Для поглощения воды корнем необходимо, чтобы _____________ клеток эпиблемы был меньше аналогичного показателя почвенного раствора.

1) водный потенциал

29. Одним из механизмов создания градиента водного потенциала между почвой и клетками корня растения является …

1) работа ионных насосов мембраны

30. Одним из важнейших механизмов создания градиента водного потенциала между почвой и клетками корня растения является …

1) транспирация

31. Движение воды по растению происходит потому, что существует большая разница между водным потенциалом атмосферы и …

1) почвенного раствора

32. Вода поднимается по ксилеме, так как сцепленные молекулы воды создают непрерывный поток благодаря явлению …

1) когезии

33. Явление, когда полярные молекулы воды притягивают друг друга и в сосудах удерживаются за счет водородных связей, получило название …

1) когезия

34. Пояски Каспари, пропитанные суберином, __________________ движению воды по апопласту.

1) препятствуют

35. Поступление воды в корень начинается с корневых волосков, затем вода передвигается в …

1) паренхиму корня

36. Поступление воды в корень начинается с корневых волосков, затем вода передвигается в паренхиму корня, далее следует …

1) перицикл

37. Различная легкость передвижения воды по паренхиме и по сосудам обусловлена совершенно различными механизмами передвижения воды по ним. По сосудам вода течет как по полым трубкам, подчиняясь законам …

1) термодинамики

38. Различная легкость передвижения воды по паренхиме и по сосудам обусловлена совершенно различными механизмами передвижения воды по ним. По паренхимным клеткам вода передвигается в основном за счет …

39. Движение воды через полупроницаемую мембрану по градиенту водного потенциала – это …

40. Сильное уплотнение почвы затрудняет поглощение воды корнями вследствие …

1) подавления дыхания

41. Затопление почвы затрудняет поглощение воды растение вследствие …

1) ухудшения аэрации

42. Холодная почва является физиологически сухой из-за …

1) подавления поглотительной деятельности корня

43. Корневое давление зависит от …

1) энергетической эффективности дыхания

44. Гуттация является проявлением …

1) корневого давления

45. Поглощение воды меристематической зоной корня осуществляется за счет ________ сил.

1) матричных

46. Связь корневого давления с дыханием корней установил …

1) Д.А.Сабинин

47. Периодичность плача растений установил …

1) Д.О.Баранецкий

48. В системе почва – корень – лист – атмосфера самое низкое значение водного потенциала имеет …

1) атмосфера

49. В системе почва – корень – лист – атмосфера самое высокое значение водного потенциала имеет …

50. Водный потенциал корневых волосков равен …

51. В корне самое низкое значение водного потенциала у …

1) сосудов ксилемы

Транспирация, и ее регулирование растением

1. У растений одной из функций транспирации является …

1) терморегуляци

2. Испарение воды в атмосферу из клеточных стенок эпидермиса листа называют ___________ транспирацией.

1) кутикулярной

3. Процесс испарения воды надземными органами растения называют …

1) транспирацией

4. Процесс открывания устьиц растения начинается с ___________ замыкающими клетками осмотически активных соединений.

1) поглощения

5. Обычно интенсивность транспирации у растений достигает максимума …

6. Процесс выделения воды в виде жидкости надземными органами растения называют …

1) гуттацией

7. Вещества в составе кутикулы листа обычно …

1) гидрофобны

8. Особенностью замыкающих клеток устьиц растения является …

1) неодинаковая толщина клеточной стенки

9. Абсцизовая кислота вызывает ____________________ устьиц.

1) закрытие

10. Ауксин вызывает ____________________ устьиц.

1) открытие

11. Транспирация может быть двух типов …

1) устьичной и кутикулярной

12. Увеличение содержания СО 2 в межклетниках вызывает _______________ устьиц.

1) закрытие

13. Открытие устьиц обычно ________________ фотосинтез.

1) стимулирует

14. Главным фактором, регулирующим устьичную транспирацию у растений, является …

15. Работа верхнего концевого двигателя водного тока у растения обеспечивается …

1) транспирацией

16. При наличии листьев и оптимальной влажности воздуха главную роль в транспорте воды у растения играет ______________________ концевой двигатель тока воды.

1) верхний

17. У растений устьица образованы клетками …

1) эпидермиса

18. У растений одной из функций транспирации является …

1) терморегуляция

19. У растений одной из функций транспирации является …

1) газообмен

20. Замыкающие клетки устьиц должны быть парными, потому что изменение их формы зависит от …

1) уровня тургора

21. Стрессовое воздействие сухого воздуха вызывает выделение эпидермальными клетками ______________ в апопласт, что является непосредственной причиной быстрого закрывания устьиц.

1) абсцизовой кислоты

22. Открывание устьиц стимулируется …

1) низкой межклеточной концентрацией СО 2

23. Открывание устьиц стимулируется …

1) высокой интенсивностью света

24. Закрывание устьиц вызывается …

1) низкой влажностью окружающей среды

25. Закрывание устьиц вызывается …

1) повышением температуры листа

26. Закрывание устьиц вызывается …

1) выделением абсцизовой кислоты

27. Транспирация снижает температуру листа за счет высокой (ого) ___ воды.

1) теплоты парообразования

28. Закрывание устьиц по мере развития водного дефицита обусловлено увеличением концентрации …

1) абсцизовой кислоты

29. Фотоактивное открывание устьиц начинается с …

1) включения протонной помпы

30. Увеличение осмотического давления клеточного сока при открывании устьиц происходит за счет ионов …

1) калия и хлора

31. На ширину устьичной щели значительное влияние оказывает концентрация ________ в замыкающих клетках.

32. Основной путь расходования воды растением …

1) транспирация

33. Устьица расположена в _______ листа.

1) эпидермисе

34. В условиях водного дефицита устьичная транспирация ограничена …

1) испарением воды с поверхности клеток в межклетники

35. Интенсивность транспирации определяют путем учета …

1) убыли массы растения

36. В жаркий летний полдень у листьев, расположенных в глубине кроны дерева, интенсивность транспирации …

1) снижается

37. Соотношение между транспирацией и испарением воды с такой же величины открытой водной поверхности – это ________________ транспирация (ии)

1) относительная

38. При достаточной влагообеспеченности интенсивность транспирации имеет самый высокий уровень …

1) в полдень

39. Водяной пар передвигается в межклетниках листа за счет …

1) диффузии

Эффективность использования воды растениями и физиологические основы орошения

1. Для гигрофитов минимально необходимое для их жизни содержание воды составляет ____________ процентов.

2. Для мезофитов минимально необходимое для их жизни содержание воды составляет _____________ процентов.

3. Для ксерофитов минимально необходимое для их жизни содержание воды составляет _____________ процентов.

4. Количество воды в процентах, недостающее для полного насыщения ткани листа водой называется …

1) водным дефицитом

5. Максимальный водный дефицит в листьях растений при нормальных условиях наблюдается в …

1) полдень

6. Суммарный расход воды за вегетацию с 1 га посева (включая испарение с поверхности почвы) – это …

1) эвапотранспирация

7. Выпадение 100 кубометров воды на га соответствует ____________ миллиметров осадков.

8. Коэффициент водопотребления – это отношение …

1) эвапотранспирации к созданной биомассе

9. Коэффициент водопотребления увеличивается при …

1) снижении плодородия почвы

10. Транспирационный коэффициент уменьшается при …

1) внесении удобрений

11. Для накопления растениями сухого вещества оптимальная влажность почвы составляет ________ %.

12. Количество сухого вещества, накопленного растением при израсховании 1 кг воды, называется …

13. Количество граммов воды, израсходованное растением при образовании 1 г сухого вещества, называется …

14. Ослабление поглощения воды корнями при уплотнении почвы или затоплении ее водой вызвано …

1) подавлением дыхания

15. Необходимость в поливе растений можно оценить по …

1) электропроводности тканей

16. Растения наиболее чувствительны к недостатку влаги в период …

1) закладки репродуктивных органов

17. Одним из ранних изменений указывающих на недостаток воды у растения и необходимость полива является …

1) резкое падение величины водного потенциала

18. Транспирационный коэффициент – это количество воды, необходимое для продукции 1 г ___________________ вещества.

19. Продуктивность транспирации – это масса (в граммах) ____________ вещества образующегося при испарении 1000 г воды.

20. Состояние, при котором растение не может поглощать воду, несмотря на ее большое количество в окружающей среде, называется _____

1) физиологической

21. При орошении без внесения удобрений величина транспирационного коэффициента у растений …

1) возрастает

22. При снижении содержания кислорода в почве транспирационный

коэффициент у растений …

1) уменьшается

24. Растения, которые не могут регулировать свой водный обмен, называются …

1) гомойогидрическими

25. Водные растения с листьями, частично или полностью погруженными в воду или плавающими, называются …

1) гидрофиты

26. У большинства растения при снижении температуры воздуха транспирационный кэффициент …

1) уменьшается

27. В качестве антитранспиранта при пересадке растений используют …

1) абсцизовую кислоту

28. В качестве пленочных антитранспирантов при пересадке растений используют …

29. При завядании растения интенсивность транспирации …

1) снижается

30. При засухе увядают нижние (более старые) листья в связи с тем, что …

31. При засухе первыми увядают нижние (более старые) листья в связи с тем, что …

1) водный потенциал верхних листьев ниже

32. Количество граммов сухого вещества, накопленного растением при испарении 1000 г воды, - это …

1) продуктивность транспирации

33. Количество граммов воды, израсходованной растением на накопление 1 г сухого вещества – это …

1) транспирационный коэффициент

34. Отношение общего количества воды, израсходованного за вегетационный период, к созданному урожаю – это …

1) коэффициент водопотребления

35. Коэффициент водопотребления посева зерновых культур составляет …

36. Продуктивность транспирации культурных растений составляет …

37. Сельскохозяйственные культуры по отношению к воде относятся к экологической группе …

1) мезофитов

38. При засухе водный дефицит растений возрастает …

1) с утра до вечера, ночью полностью не исчезает

39. При нормальной влагообеспеченности водный дефицит растений возрастает …

1) с утра до полудня, снижается к вечеру и полностью исчезает ночью

40. Значение транспирационного коэффициента может быть использовано для характеристики …

1) способности растения эффективно использовать воду

41. Наибольшей чувствительностью к водному дефициту характеризуется …

42. В условиях водного дефицита происходит образование …

1) абсцизовой кислоты

43. Для установления необходимости полива определяют …

1) водный дефицит

МИНЕРАЛЬНОЕ ПИТАНИЕ РАСТЕНИЙ

Физиологическая роль элементов минерального питания

1. Суховершинность плодовых культур наблюдается при остром дефиците …

2. Фосфор входит в состав …

    нуклеотидов

3. Важным свойством _____ является способность к образованию макроэргических связей

4. Элементом минерального питания, в наибольшей степени усиливающим морозостойкость растений, является …

5. Элемент минерального питания, входящий в состав хлорофилла, называется …

6. Функционально активные рибосомы образуются с участием …

7. Биохимическая роль бора заключается в том, что он …

    активирует субстраты

8. Нуклеиновые кислоты содержат …

9. Нуклеиновые кислоты содержат …

10. Недостаток ____ вызывает повреждение концевых меристем.

Роль натрия в жизни растений

Натрий регулирует транспорт углеводов в растении. Хорошая обеспеченность растений натрием повышает их зимостойкость. При его недостатке замедляется образование хлорофилла.

В организме животного содержится примерно 0,1% натрия (по массе).

Натрий распределяется по всему организму. В организме человека натрий содержится в эритроцитах, сыворотке крови, пищеварительных соках, мышцах, во всех внутренних органах, коже. 40% натрия находится в костной ткани.

Совместно с калием натрий создает трансмембранный потенциал клетки и обеспечивает возбудимость клеточной мембраны. Входит также в состав натрий-калиевого насоса, особого белка (порового комплекса), пронизывающего всю толщу мембраны. Внеклеточная концентрация ионов Na + всегда выше, чем внутриклеточная, за счет чего градиент концентрации этих ионов направлен внутрь клетки, обеспечивая активный транспорт веществ в клетку. Натрий поддерживает кислотно-щелочной баланс в
организме, регулирует кровяное давление, функ-ционирование нервов и мышц, поглощение глюкозы клетками, образование гликогена, синтез белков, влияет на состояние слизистых оболочек жизненно важных органов пищеварительного тракта. Обмен натрия находится под контролем щитовидной же-лезы.

Его недостаток приводит к головным болям, ослаблению памяти, потере аппетита, повышению кислотности желудочного сока, могут возникнуть проблемы с мочевым пузырем, утомляемость.

Избыток натрия приводит к задержке воды в организме (отекам), гипертонии, заболеваниям сердца.

Поваренная соль. Все соленые продукты. Море-продукты. Овощи и зелень: капуста, мята, укроп, петрушка, морковь, лук, салат-латук, перец, спаржа, хрен, чеснок. Фрукты и ягоды: черная смородина, клюква, лимоны. Продукты животного происхождения: колбаса, сало, соленая рыба, икра, сыр.

NaCl

NaHCO 3 – гидрокарбонат натрия, питьевая сода.

Знаете ли вы, что…

    Натрий был открыт в 1807 г. английским химиком и физиком Г.Дэви и название получил от арабск. натрон или натрун – моющее средство – по применению природной соды и едкого натра для изготовления мыла.

    Число атомов натрия в организме человека составляет 2,8 х 10 24 , а в одной человеческой клетке – 2,8 х 10 10 .

    Суточное поступление натрия в организм с продуктами питания составляет в среднем 4,4 г.

    В медицине хлористый натрий применяют в виде изотонического 0,9% раствора при обезвоживании организма. Натрий входит в состав многих лекар-ственных препаратов, в том числе антибиотиков, викасола – синтетического производного витамина K.

Кальций

Роль кальция в жизни растений

Содержание кальция в растениях составляет в среднем 0,3% (по массе). Пектиновые вещества (кальциевые и магниевые соли галактуроновой кислоты) входят в состав клеточных стенок и межклеточного вещества высших и низших растений. Кальций используется как строительное вещество для срединной пластинки, а также является компонентом «внешнего скелета» водорослей; увеличивает прочность растительных тканей и способствует повышению выносливости растений.

Недостаток Са вызывает набухание пектиновых веществ, ослизнение клеточных стенок и загнивание растений; страдает корневая система, происходит побеление верхушек растений и молодых листьев. Вновь образующиеся листья мелкие, искривленные, с неправильной формой краев, на пластинке появляются светло-желтые пятна, края листьев загибаются вниз. При сильном дефиците кальция верхушка побега погибает.

Если в почве повышенное содержание кальция, то на этих участках хорошо произрастают растения-индикаторы: Венерин башмачок, солнцецвет, степная астра, папоротник из рода пеллея, ятрышники, мордовники, льнянка, наперстянка крупноцветковая, порезник горный и др.

Роль в жизни животных и человека

В организме животного в среднем от 1,9% до 2,5% кальция (по массе). Кальций – это материал для постройки костных скелетов. Карбонат кальция CaCO 3 входит в состав кораллов, раковин моллюсков, панцирей морских ежей и скелетов микроорганизмов.

В организме человека 98–99% кальция содержится в костях скелета, которые выполняют функцию «депо» кальция; ионы кальция присутствуют во всех тканях и жидкостях организма: 1 г – в плазме крови, 6–8 г – в мягких тканях. При весе человека 70 кг содержание Са в организме составляет 1700 г, причем 80% – фосфата кальция Ca 3 (PO 4) 2 и 13% – карбоната кальция CaCO 3 .

Кальций необходим для процессов кроветворения и свертывания крови, для регуляции работы сердца, мышечного сокращения, обмена веществ, уменьшения проницаемости сосудов, для норма-льного роста костей (скелет, зубы). Соединения ка-льция благотворно влияют на состояние нервной системы, проведение нервных импульсов, оказывают противовоспалительное действие, обеспечивают проницаемость клеточной мембраны, активацию некоторых ферментов. Обмен кальция регулируется в организме человека и животных кальцитонином – гормоном щитовидной железы, паратгормоном – гормоном околощитовидной железы и кальциферолами – группа витамина D. Необходимо помнить, что организм усваивает кальций только в присутствии жиров: на каждые 0,06 г кальция нужно 1 г жира. Выводится кальций из организма через кишечник и почки.

Недостаток кальция приводит к остеопорозу, нарушениям в опорно-двигательной, нервной системах, недостаточной свертываемости крови.

Основные источники поступления в организм

Овощи и злаки: горох, чечевица, соя, бобы, фасоль, шпинат, морковь, репа, молодые листья одуванчиков, сельдерей, спаржа, капуста, свекла, картофель, огурцы, салат, лук, зерна пшеницы, хлеб ржаной, крупа овсяная. Фрукты и ягоды: яблоки, вишня, крыжовник, земляника, абрикосы, смородина, ежевика, апельсины, ананасы, персики, виноград. Миндаль. Кисломолочные продукты: творог, сметана, кефир.

Наиболее распространенные соединения

CaCO 3 – карбонат кальция, мел, мрамор, известняк.
Са(ОН) 2 – гидроксид кальция, гашеная известь (пушонка).
СаО – оксид кальция, негашеная известь (кипелка).
CaOCl 2 – смешанная соль соляной и хлорноватистой кислот, хлорная известь (хлорка).
CaSO 4 х 2H 2 O – двухводный сульфат кальция, гипс.

Знаете ли вы, что…

    Кальций был открыт английским химиком Х.Дэни в 1808 г. при электролизе влажной гашеной извести Са(ОН) 2 . Его название происходит от лат. калцис (род. падеж лат. калкс – камень, известняк) по его содержанию в известняке.

    Число атомов кальция в теле человека составляет 1,6 х 10 25 , а в одной клетке 1,6 х 10 11 .

    Суточное поступление кальция с продуктами питания и водой составляет 500–1500 мг.

    Известковые скелеты коралловых полипов, состоящие из карбоната кальция, образуют в тропических морях рифы и атоллы, коралловые острова. Из скелетов коралловых полипов, отмиравших в течение многих тысячелетий, образовались толщи известняка, мела и мрамора, которые используются как строительный материал.

    Существуют растения – кальцефилы (от греч. филео – люблю), которые растут преимущественно на щелочных почвах, богатых кальцием, а также в местах выхода известняков, мела (ветреница лесная, таволга шестилепестная, лиственница европейская и др.).

    Существуют растения – кальцефобы (от греч. фобос – страх), которые избегают известняковых почв, т.к. присутствие ионов кальция тормозит их рост (торфяные мхи, некоторые злаки).

Сера

Роль серы в жизни растений, микроорганизмов

Содержание серы в растениях составляет в среднем 0,05 % (по массе). Сера входит в состав аминокислот (цистин, цистеин, метионин). Растения получают серу из почвы из растворимых сульфатов, а гнилостные бактерии превращают серу белков в сероводород Н 2 S (отсюда – отвратительный запах гниения). Но большая часть сероводорода образуется при восстановлении сульфатов сульфатредуцирующими бактериями. Этот H 2 S фототрофными бактериями в отсутствие молекулярного кислорода окисляется до серы и сульфатов, а в присутствии О 2 его окисляют до сульфатов аэробные серобактерии.

У многих бактерий сера временно сохраняется в виде шариков. Ее количество зависит от содержания сероводорода: при его недостатке сера окисляется до серной кислоты.

2H 2 S + O 2 ––> 2H 2 O + 2S + энергия

2S + 3O 2 + 2H 2 O ––> 2H 2 SO 4 + энергия

В водоемах, вода которых содержит сероводород, живут бесцветные серобактерии бежиатоа и тиотрикс. Им не нужна органическая пища. Для хемосинтеза они используют сероводород: в результате реакций между H 2 S, CO 2 и O 2 образуются углеводы и элементарная сера.

Большая часть серы не усваивается растениями, но помогает им усваивать фосфор. Нехватка серы снижает интенсивность фотосинтеза. Индикатором повышенного содержания серы в почве являются астрагалы.

Роль в жизни животных и человека

В организме животного содержится 0,25 % серы (по массе). Простейшие планктонные радиолярии имеют минеральный скелет из сернокислого стронция, который обеспечивает не только защиту, но и «парение» в толще воды.

В организме человека серы содержится 400–700 миллионных долей от массы. Сера входит в состав белков и аминокислот, ферментов и витаминов. Особенно важна она для синтеза белков кожи, ногтей и волос. Сера является составной частью активных веществ: витаминов и гормонов (например, инсулина). Она участвует в окислительно-восстановительных процессах, энергетическом метаболизме и реакциях детоксикации, активирует ферменты.

При недостатке серы кожа подвергается воспалительным заболеваниям, наблюдается ломкость костей и выпадение волос.

Среди соединений серы особенно опасным считается сероводород – газ, обладающий не только резким запахом, но и большой токсичностью. В чистом виде он убивает человека мгновенно. Опасность велика даже при незначительном (порядка 0,01%) содержании сероводорода в воздухе. Сероводород опасен тем, что накапливаясь в организме, он соединяется с железом, входящим в состав гемоглобина, что может привести к тяжелейшему кислородному голоданию и смерти.

Основные источники поступления в организм

Продукты растительного происхождения: орехи, бобовые, капуста, хрен, чеснок, тыква, инжир, крыжовник, слива, виноград. Продукты животного происхождения: мясо, яйца, сыр, молоко.

Наиболее распространенные соединения

H 2 S – сероводород.
Na 2 S – сульфид натрия.

Знаете ли вы, что…

    Сера известна с I в. до н.э. Названия происходит от древнеиндусского сира – светло-желтый, по цвету природной серы; латинское название от санскр. сулвери – горючий порошок.

    Число атомов серы в теле человека 3,3 х 10 24 , а в одной клетке – 2,4 х 10 10 .

    Сероводород H 2 S – ядовитый зловонный газ, используется в химической промышленности, а также как лечебное средство (сернистые ванны). Сера входит в состав лекарств, в том числе антибиотиков, которые способны подавлять активность микробов. Мелкодисперсная сера – основа мазей для лечения грибковых заболеваний кожи.

    Природные сульфиды составляют основу руд цветных и редких металлов и широко используются в металлургии. Сульфиды щелочных и щелочно-земельных металлов Na 2 S, CaS, BaS применяются в кожевенном производстве.

Хлор

Роль хлора в жизни растений, микроорганизмов

Содержание хлора в организме растений составляет примерно 0,1% (по массе). Это один из основных элементов водно-солевого обмена всех живых организмов. Некоторые растения (галофиты) не только способны расти на засоленных почвах с высоким содержанием поваренной соли (NaCl), но и накапливать хлориды. К ним относятся солянки, солерос, сведа, тамарикс и др. Ионы хлора Cl – участвуют в энергетическом обмене, положительно влияют на поглощение корнями кислорода. У растений хлор принимает участие в окислительных реакциях и фотосинтезе.

Галофильные микроорганизмы обитают в среде с концентрацией NaCl до 32% – в соленых водоемах и засоленных почвах. Это бактерии родов Paracoccus , Pseudomonas , Vibrion и некоторые другие. Высокие концентрации NaCl необходимы им для поддержания структурной целостности цито-плазматической мембраны и функционирования связанных с ней ферментных систем.

Роль в жизни животных и человека

В организме животного содержится от 0,08 до 0,2% хлора (по массе). Отрицательно заряженные ионы хлора, преобладающие в организме животных, играют огромную роль в в водно-солевом обмене. В условиях высокой солености, при содержании соли в воде не ниже 3%, обитают галофиты: радиолярии, рифообразующие кораллы, обитатели коралловых рифов и мангровых зарослей, большинство иглокожих, головоногие моллюски, многие ракообразные. Во внутриматериковых водоемах с соленостью от 2,4–10 до 30% обитают некоторые коловратки, рачок Artemia salina , личинка комара Aedes togoi и некоторые другие.

Мышечная ткань человека содержит 0,20–0,52% хлора, костная – 0,09%, в крови – 2,89 г/л. В организме взрослого человека около 95 г хлора. Ежедневно с пищей человек получает 3–6 г хлора. Основная форма его поступления в организм – хлорид натрия. Он стимулирует обмен веществ, рост волос. Хлор определяет физико-химические процессы в тканях организма, участвует в поддержании кислотно-щелочного равновесия в тканях (осморегуляция). Хлор – основное осмотически активное вещество крови, лимфы и других жидкостей тела.

Соляная кислота, которая входит в состав желудочного сока, играет собую роль в пищеварении, обеспечивая активизацию фермента пепсина, и оказывает бактерицидное действие.

Присутствие в воздухе около 0,0001% хлора раздражающе действует на слизистые оболочки. Постоянное пребывание в такой атмосфере может привести к заболеванию бронхов, резкому ухудшению самочувствия. По существующим санитарным нормам содержание хлора в воздухе рабочих помеще-ний не должно превышать 0,001 мг/л, т.е. 0,00003%. Содержание хлора в воздухе в количестве 0,1% вызывает острое отравление, первый признак которого – приступы сильнейшего кашля. При отравлении хлором необходим абсолютный покой, полезно вдыхать кислород или аммиак (нашатырный спирт), или пары спирта с эфиром.

Основные источники поступления в организм

Хлорид натрия – поваренная соль. Соленые продукты. Ежедневно человек должен потреблять около 20 г поваренной соли.

Наиболее распространенные соединения

NaCl – хлорид натрия, поваренная соль.
НСl – хлороводородная кислота, соляная кислота.
HgCl 2 – хлорид ртути (II), сулема.

Знаете ли вы, что…

    Хлор впервые получил шведский химик К.Шееле при взаимодействии соляной кислоты с пиролюзитом MnO 2 х H 2 O. Название происходит от греч. клорос – желто-зеленый цвет увядающей листвы – по окраске газообразного хлора.

    С соединениями хлора, прежде всего с поваренной солью NaCl, человечество знакомо с доисторических времен. Алхимикам была известна соляная кислота НСl и смесь ее с азотной кислотой HNO 3 – царская водка.

    Число атомов хлора в теле человека составляет 1,8 х 10 24 , а в одной клетке – 1,8 х 10 10 .

    В небольших дозах ядовитый хлор иногда может служить и противоядием. Так, пострадавшим от сероводорода дают нюхать нестойкую хлорную известь. Взаимодействуя, два яда взаимно нейтрализуются.

    Хлорирование водопроводной воды уничтожает болезнетворные бактерии.

    Существуют водные организмы – галофобы, не переносящие высоких значений солености и обитающие только в пресных (соленость не выше 0,05%) или слабосоленых (до 0,5%) водоемах. Это многие водоросли, простейшие, некоторые губки и кишечнополостные (гидра), большинство пиявок, многие брюхоногие и двустворчатые моллюски, большин-ство водных насекомых и пресноводных рыб, все земноводные.

    HgCl 2 – сулема – очень сильный яд. Разбавленные растворы ее (1: 1000) используют в медицине как дезинфицирующее средство.

Продолжение следует